Patents by Inventor Ruqiang Yan

Ruqiang Yan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10520397
    Abstract: Multiple methods and corresponding apparatuses for efficient and reliable defect diagnosis in components of mechanical systems, are described. According to one aspect, multi-scale enveloping-order spectrogram is used to diagnose, or detect, defects in a moving component of a mechanical system. According to another aspect, defect identification and diagnosis in a motor is performed based on spectral characteristics of motor current envelope. According to yet another aspect, a logic rule model, employing classification of features associated with single- or multi-sensor data, is employed for diagnosis of defects in components of mechanical systems.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 31, 2019
    Assignees: University of Connecticut, Canrig Drilling Technology Ltd.
    Inventors: Robert X. Gao, Jinjiang Wang, Ruqiang Yan, Brian Charles Ellis, Boone Elbert Smith, Jose Abelardo Sanchez Puente
  • Publication number: 20150233792
    Abstract: Multiple methods and corresponding apparatuses for efficient and reliable defect diagnosis in components of mechanical systems, are described. According to one aspect, multi-scale enveloping-order spectrogram is used to diagnose, or detect, defects in a moving component of a mechanical system. According to another aspect, defect identification and diagnosis in a motor is performed based on spectral characteristics of motor current envelope. According to yet another aspect, a logic rule model, employing classification of features associated with single- or multi-sensor data, is employed for diagnosis of defects in components of mechanical systems.
    Type: Application
    Filed: May 31, 2012
    Publication date: August 20, 2015
    Applicants: CANRIG DRILLING TECHNOLOGY, UNIVERSITY OF CONNECTICUT
    Inventors: Robert X. Gao, Jinjiang Wang, Ruqiang Yan, Brian Charles Ellis, Boone Elbert Smith, Jose Abelardo Sanchez Puente
  • Publication number: 20150160101
    Abstract: A method of testing and monitoring operational integrity of a drilling rig is described. The method includes operating the drilling rig in a non-drilling mode at a sequence of different phases including an acceleration phase, a constant speed phase, and a decelerating phase, collecting sensor data associated with one or more components of the drilling rig while the drilling is operated in the non-drilling mode at the sequence of different phases, and analyzing the collected sensor data to determine the operational integrity of the drilling rig. The analyzed data, together with previously stored historical data is used to estimate the life expectancy of the rig and monitor, plan, control, or report maintenance activity for the drilling rig, top drive, or any other system.
    Type: Application
    Filed: May 31, 2012
    Publication date: June 11, 2015
    Applicants: Canrig Drilling Technology Ltd., University of Connecticut
    Inventors: Robert X. Gao, Jinjiang Wang, Ruqiang Yan, Brian Charles Ellis, Boone Elbert Smith, Jose Abelardo Sanchez Puente
  • Patent number: 7602985
    Abstract: A signal processing technique that decomposes complex, dynamically changing non-stationary signals from machine components such as bearings into different scales by means of a continuous wavelet transform. The envelope signal in each scale is then calculated from the modulus of the wavelet coefficients. Subsequently, Fourier transform is performed repetitively on the envelope of the signal at each scale, resulting in an “envelope spectrum” of the original signal at the various scales. The final output is a three-dimensional scale-frequency map that indicates the intensity and location of the defect-related frequency lines. The technique is generic in nature, and applicable not only to machine condition monitoring, but also to the health monitoring of a wide range of dynamic systems, including human beings.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: October 13, 2009
    Assignee: University of Massachusetts
    Inventors: Robert X. Gao, Ruqiang Yan
  • Publication number: 20090222228
    Abstract: A signal processing technique that decomposes complex, dynamically changing non-stationary signals from machine components such as bearings into different scales by means of a continuous wavelet transform. The envelope signal in each scale is then calculated from the modulus of the wavelet coefficients. Subsequently, Fourier transform is performed repetitively on the envelope of the signal at each scale, resulting in an “envelope spectrum” of the original signal at the various scales. The final output is a three-dimensional scale-frequency map that indicates the intensity and location of the defect-related frequency lines. The technique is generic in nature, and applicable not only to machine condition monitoring, but also to the health monitoring of a wide range of dynamic systems, including human beings.
    Type: Application
    Filed: September 14, 2006
    Publication date: September 3, 2009
    Inventors: Robert X. Gao, Ruqiang Yan