Patents by Inventor Russ K. Majors

Russ K. Majors has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210237313
    Abstract: Cutting apparatuses and methods of use thereof are discussed. For example, the cutting apparatus may include a chassis with one or more substrate interfaces and a scribe guide. The cutting apparatuses also may include a plurality of support pistons, a deformable support, a locking mechanism, and/or an anchor extension. The support pistons may be adjustable to generally conform to a substrate, such as a non-planar substrate.
    Type: Application
    Filed: January 28, 2021
    Publication date: August 5, 2021
    Applicant: Boral IP Holdings (Australia) Pty Limited
    Inventors: William E. JACKSON, II, Jacob MYERS, Russell L. HILL, Amitabha KUMAR, Russ K. MAJORS, Daniel GENORD, Grey PARKER
  • Patent number: 10324978
    Abstract: Composite materials and methods for their preparation are described herein. The composite materials can comprise a polyurethane and an absorptive filler. The polyurethane can be formed from the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers. The one or more isocyanate-reactive monomers can comprise at least one polyol and a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: June 18, 2019
    Assignee: Boral IP Holdings (Australia) PTY Limited
    Inventors: Russell L. Hill, Guy Crocco, Russ K. Majors
  • Patent number: 10138341
    Abstract: Polyurethane composites and methods of preparation are described herein. The methods of making the polyurethane composite can include mixing (1) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and mixtures thereof, (2) at least one polyol, (3) an inorganic filler, and (4) an evaporative coolant in an extruder to form a mixture. The method also include extruding the mixture into a mold cavity, generating heat in the mold cavity from the reaction of the at least one isocyanate and the at least one polyol, and allowing the evaporative coolant to migrate to an interface between the mixture and the interior mold surface. The temperature of the mixture causes evaporation of the evaporative coolant at the interface thereby removing heat at the interface. Suitable evaporative coolants for use in the methods of making the polyurethane composites include hydrofluorocarbons and hydrochlorofluorocarbons.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: November 27, 2018
    Assignee: Boral IP Holdings (Australia) PTY Limited
    Inventors: Guy Crocco, Russ K. Majors, Russell L. Hill, Brian Shaw
  • Publication number: 20180218010
    Abstract: Composite materials and methods for their preparation are described herein. The composite materials can comprise a polyurethane and an absorptive filler. The polyurethane can be formed from the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers. The one or more isocyanate-reactive monomers can comprise at least one polyol and a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler.
    Type: Application
    Filed: March 9, 2018
    Publication date: August 2, 2018
    Inventors: Russell L. Hill, Guy Crocco, Russ K. Majors
  • Patent number: 9932457
    Abstract: Composite materials and methods for their preparation are described herein. The composite materials can comprise a polyurethane and an absorptive filler. The polyurethane can be formed from the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers. The one or more isocyanate-reactive monomers can comprise at least one polyol and a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 3, 2018
    Assignee: Boral IP Holdings (Australia) Pty Limited
    Inventors: Russell L. Hill, Guy Crocco, Russ K. Majors
  • Publication number: 20160280874
    Abstract: Polyurethane composites and methods of preparation are described herein. The methods of making the polyurethane composite can include mixing (1) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and mixtures thereof, (2) at least one polyol, (3) an inorganic filler, and (4) an evaporative coolant in an extruder to form a mixture. The method also include extruding the mixture into a mold cavity, generating heat in the mold cavity from the reaction of the at least one isocyanate and the at least one polyol, and allowing the evaporative coolant to migrate to an interface between the mixture and the interior mold surface. The temperature of the mixture causes evaporation of the evaporative coolant at the interface thereby removing heat at the interface. Suitable evaporative coolants for use in the methods of making the polyurethane composites include hydrofluorocarbons and hydrochlorofluorocarbons.
    Type: Application
    Filed: July 28, 2014
    Publication date: September 29, 2016
    Inventors: Guy Crocco, Russ K. Majors, Russell L. Hill, Brian Shaw
  • Publication number: 20150267029
    Abstract: Composite materials and methods for their preparation are described herein. The composite materials can comprise a polyurethane and an absorptive filler. The polyurethane can be formed from the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers. The one or more isocyanate-reactive monomers can comprise at least one polyol and a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler.
    Type: Application
    Filed: April 12, 2013
    Publication date: September 24, 2015
    Inventors: Russell L. Hill, Guy Crocco, Russ K. Majors
  • Publication number: 20090258777
    Abstract: A method and system for treating fly ash with a treating fluid by evenly dispersing a treating fluid into a flowing stream of fly ash. By dispersing the treating fluid into the fly ash as the fly ash is flowing, the method takes advantage of natural mixing and particle motion that occurs during flow of the bulk solid. The application of treating fluid is advantageously controlled by an automated controller that has inputs and outputs that allow the controller to adjust flow rate of the treating fluid in correspondence with a measured flow rate of the fly ash.
    Type: Application
    Filed: June 19, 2009
    Publication date: October 15, 2009
    Applicant: BORAL MATERIAL TECHNOLOGIES INC.
    Inventors: Marc-Andre Tardif, Russ K. Majors, Russell L. Hill
  • Publication number: 20040144287
    Abstract: A method and system for treating fly ash with a treating fluid by evenly dispersing a treating fluid into a flowing stream of fly ash. By dispersing the treating fluid into the fly ash as the fly ash is flowing, the method takes advantage of natural mixing and particle motion that occurs during flow of the bulk solid. The application of treating fluid is advantageously controlled by an automated controller that has inputs and outputs that allow the controller to adjust flow rate of the treating fluid in correspondence with a measured flow rate of the fly ash.
    Type: Application
    Filed: May 6, 2003
    Publication date: July 29, 2004
    Applicant: Boral Material Technologies Inc.
    Inventors: Marc-Andre Tardif, Russ K. Majors, Russell L. Hill