Patents by Inventor Russell A. Martin

Russell A. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128695
    Abstract: An approach for facilitating mechanical and electrical connection of electric machines and electrical components in an electrical system using connectors with quick connect/disconnect electrical connectors is disclosed. Each quick connect/disconnect electrical connector can be placed on the end of an electrical power distribution cable that connects with an electric machine or electrical component. The electric machines and electrical components and the electrical power distribution cables can have hollow coolant passages formed therein to receive cooling fluid from a cooling device for direct cooling of the electric machines, electrical components and the electrical power distribution cables.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 18, 2024
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: MATTHEW ROBERT MARTIN, JOHN RUSSELL YAGIELSKI, PHILIP MICHAEL CIOFFI, MARK EDWARD DAME, WEI ZHANG
  • Publication number: 20230405189
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Application
    Filed: June 14, 2023
    Publication date: December 21, 2023
    Inventors: Xuesong Jiang, Sashank Reddy, Gerald Brandacher, Hai-Quan Mao, Justin Sacks, Xiaowei Li, Kevin Feng, Russell Martin, Georgia C. Yalanis, Ji Suk Choi
  • Publication number: 20230338612
    Abstract: The presently disclosed composition and methods are provided for an in situ forming nanofiber-hydrogel composite, which is formed using non-covalent binding schemes between the fiber surface and hydrogel-forming polymers. A method for healing a soft tissue defect can include applying the said composite material to a soft tissue defect.
    Type: Application
    Filed: July 26, 2022
    Publication date: October 26, 2023
    Inventors: Russell Martin, Hai-quan Mao
  • Patent number: 11771807
    Abstract: A soft tissue device can incorporate a composite material comprising a gel and at least one nanostructure disposed within the gel. A soft tissue device can further incorporate biologically active materials such as cells, tissues. A method for healing a soft tissue defect while promoting soft tissue regeneration can include applying a soft tissue device to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a soft tissue device for use in healing soft tissue defects can include providing a gel, disposing nanofibers within the gel, and a biologically active material.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: October 3, 2023
    Assignee: The Johns Hopkins University
    Inventors: Sashank Reddy, Russell Martin, Xiaowei Li, Calvin Chang, Kevin Colbert, Hai-Quan Mao
  • Publication number: 20230293776
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: Xuesong Jiang, Sashank Reddy, Gerald Brandacher, Hai-Quan Mao, Justin Sacks, Xiaowei Li, Kevin Feng, Russell Martin, Georgia C. Yalanis, Ji Suk Choi
  • Patent number: 11707553
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: July 25, 2023
    Assignee: The Johns Hopkins University
    Inventors: Xuesong Jiang, Sashank Reddy, Gerald Brandacher, Hai-Quan Mao, Justin Sacks, Xiaowei Li, Kevin Feng, Russell Martin, Georgia C. Yalanis, Ji Suk Choi
  • Patent number: 11684700
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: June 27, 2023
    Assignee: The Johns Hopkins University
    Inventors: Xuesong Jiang, Sashank Reddy, Gerald Brandacher, Hai-Quan Mao, Justin Sacks, Xiaowei Li, Kevin Feng, Russell Martin, Georgia C. Yalanis, Ji Suk Choi
  • Publication number: 20230069376
    Abstract: The present disclosure relates to a composition having a structure defined by , where symbolizes a covalent bond to a neighboring atom, R2 is a functional group derived from at least one of a homocyclic molecule, a heterocyclic molecule, a polycyclic molecule, an aliphatic molecule, and/or an organo-phosphorous molecule, 1 ? x ? 1000, and 2 ? z ? 1000.
    Type: Application
    Filed: August 31, 2022
    Publication date: March 2, 2023
    Inventors: Trevor Russell MARTIN, Kyusung PARK
  • Publication number: 20220339321
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 27, 2022
    Inventors: Xuesong Jiang, Sashank Reddy, Gerald Brandacher, Hai-Quan Mao, Justin Sacks, Xiaowei Li, Kevin Feng, Russell Martin, Georgia C. Yalanis, Ji Suk Choi
  • Publication number: 20220323652
    Abstract: The presently disclosed composition and methods are provided for a hydrogel or nanofiber-hydrogel composite integrated with a surgical scaffold or mesh. A surgical scaffold device comprised of laminar composite is disclosed for the purpose of reducing foreign body response, managing tissue-materials interface, and improving the integration of the surgical mesh with the surrounding tissue of a subject.
    Type: Application
    Filed: April 29, 2022
    Publication date: October 13, 2022
    Inventors: Russell Martin, Sashank Reddy, Justin Sacks, Xiaowei Li, Brian Honewee Cho, Hai-Quan Mao
  • Patent number: 11459242
    Abstract: The present disclosure relates to a silicon nanoparticle that includes a core of silicon having an outer surface that includes *SiH3-xRx, where *Si is a silicon atom on the outer surface of the core, the first layer covers at least a portion of the outer surface, R is a ligand that includes at least one of —O—R?, —C—R?, —N—R?, —Si—R?, and/or —S—R?, and R? is a functional group that includes at least one of carbon, oxygen, nitrogen, hydrogen, sulfur, and/or phosphorus.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: October 4, 2022
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Nathan Richard Neale, Gerard Zachary Carroll, Gregory Frank Pach, Maxwell Connor Schulze, Trevor Russell Martin
  • Patent number: 11338062
    Abstract: The presently disclosed composition and methods are provided for a hydrogel or nanofiber-hydrogel composite integrated with a surgical scaffold or mesh. A surgical scaffold device comprised of laminar composite is disclosed for the purpose of reducing foreign body response, managing tissue-materials interface, and improving the integration of the surgical mesh with the surrounding tissue of a subject.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: May 24, 2022
    Assignee: The Johns Hopkins University
    Inventors: Russell Martin, Sashank Reddy, Justin Sacks, Xiaowei Li, Brian Honewee Cho, Hai-Quan Mao
  • Patent number: 11227772
    Abstract: A multi-modal diamond abrasive package or slurry is disclosed for polishing hard substrates. The multi-modal diamond abrasive package or slurry generally includes a plurality of diamond abrasives. Each one of the diamond abrasives of the plurality of diamond abrasives has a particle size. Wherein, the multi-modal diamond abrasive package or slurry includes a first diamond abrasive and a second diamond abrasive. The first diamond abrasive has a first particle size, and the second diamond abrasive has a second particle size. Where, the first particle size of the first diamond abrasive is smaller than the second particle size of the second diamond abrasive.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: January 18, 2022
    Assignee: PUREON INC.
    Inventors: Terry Michael Knight, William Rollins Gemmill, Keith Harris Joye, Tony Russell Martin
  • Publication number: 20210402061
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Application
    Filed: May 9, 2019
    Publication date: December 30, 2021
    Inventors: Sashank Reddy, Russell Martin, Xiaowei Li, Calvin Chang, Kevin Colbert, Hai-Quan Mao
  • Publication number: 20210402064
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Application
    Filed: May 9, 2019
    Publication date: December 30, 2021
    Inventors: Russell Martin, Sashank Reddy, Kevin Colbert, Hai-Quan Mao
  • Patent number: 10957182
    Abstract: Aspects of the present disclosure provide for an environmental monitoring device including at least one environmental sensor configured to periodically measure at least one property of a surrounding environment. Such environmental monitoring device may be associated with other devices or items, such as medical device assets (e.g., products; installations) that may have multiple parameter monitoring needs associated therewith, and such devices may move, for example, with such assets (e.g., during transportation) to enable continuous monitoring and assessment of the associated assets. The environmental monitoring device may be configured to receive a logging interval and an alarm rang, control the at least one environmental sensor to record the measured property according to the logging interval, generate an alarm signal in response to the measured property being outside of the alarm, and send the record of the at least one measured property and any alarm signals to a remote server.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: March 23, 2021
    Assignee: COLE-PARMER INSTRUMENT COMPANY LLC
    Inventors: Aaron Paul Judice, Russell Martin De Pina
  • Publication number: 20200251342
    Abstract: A multi-modal diamond abrasive package or slurry is disclosed for polishing hard substrates. The multi-modal diamond abrasive package or slurry generally includes a plurality of diamond abrasives. Each one of the diamond abrasives of the plurality of diamond abrasives has a particle size. Wherein, the multi-modal diamond abrasive package or slurry includes a first diamond abrasive and a second diamond abrasive. The first diamond abrasive has a first particle size, and the second diamond abrasive has a second particle size. Where, the first particle size of the first diamond abrasive is smaller than the second particle size of the second diamond abrasive.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 6, 2020
    Inventors: Terry Michael KNIGHT, William Rollins GEMMILL, Keith Harris JOYE, Tony Russell MARTIN
  • Publication number: 20200223704
    Abstract: The present disclosure relates to a silicon nanoparticle that includes a core of silicon having an outer surface that includes *SiH3-xRx, where *Si is a silicon atom on the outer surface of the core, the first layer covers at least a portion of the outer surface, R is a ligand that includes at least one of —O—R?, —C—R?, —N—R?, —Si—R?, and/or —S—R?, and R? is a functional group that includes at least one of carbon, oxygen, nitrogen, hydrogen, sulfur, and/or phosphorus.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 16, 2020
    Inventors: Nathan Richard NEALE, Gerard Zachary CARROLL, Gregory Frank PACH, Maxwell Connor SCHULZE, Trevor Russell MARTIN
  • Publication number: 20200069846
    Abstract: A composite material can include a gel and at least one nanostructure disposed within the gel. A method for healing a soft tissue defect can include applying a composite material to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a composite material for use in healing soft tissue defects can include providing a gel and disposing nanofibers within the gel.
    Type: Application
    Filed: July 18, 2019
    Publication date: March 5, 2020
    Inventors: Russell Martin, Hai-Quan Mao, Sashank Reddy, Kevin Colbert
  • Publication number: 20200046883
    Abstract: The presently disclosed composition and methods are provided for a hydrogel or nanofiber-hydrogel composite integrated with a surgical scaffold or mesh. A surgical scaffold device comprised of laminar composite is disclosed for the purpose of reducing foreign body response, managing tissue-materials interface, and improving the integration of the surgical mesh with the surrounding tissue of a subject.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Russell Martin, Sashank Reddy, Justin Sacks, Xiaowei Li, Brian Honewee Cho, Hai-Quan Mao