Patents by Inventor Russell A. Stapleton

Russell A. Stapleton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10654976
    Abstract: A method for producing a cross-linked siloxane network comprises the steps of: (a) providing a first part comprising (i) a first siloxane compound comprising at least one cyclic siloxane moiety and (ii) a second siloxane compound comprising a plurality of siloxane moieties, (b) providing a second part, the second part comprising a hydroxide salt, (c) combining the first part and the second part to produce a reaction mixture, (d) heating the reaction mixture to a temperature sufficient for the hydroxide salt to open the ring of the cyclic siloxane moiety, and (e) maintaining the reaction mixture at an elevated temperature so that at least a portion of the opened cyclic siloxane moieties react to produce a cross-linked siloxane network.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: May 19, 2020
    Assignee: Milliken & Company
    Inventors: Yunzhang Wang, Xinfei Yu, Russell A. Stapleton, Michael E. Wilson, Eduardo Torres, Sudhanshu Srivastava, Richard Lawson, Robbie W. J. M. Hanssen
  • Patent number: 10370497
    Abstract: A method for producing a cross-linked siloxane network comprises the steps of: (a) providing a first part comprising (i) a first siloxane compound comprising at least one cyclic siloxane moiety, (ii) an inorganic particulate material, and (iii) an aminosilane compound, (b) providing a second part, the second part comprising a hydroxide salt, (c) combining the first part and the second part to produce a reaction mixture, (d) heating the reaction mixture to a temperature sufficient for the hydroxide salt to open the ring of the cyclic siloxane moiety, and (e) maintaining the reaction mixture at an elevated temperature so that at least a portion of the opened cyclic siloxane moieties react to produce a cross-linked siloxane network.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 6, 2019
    Assignee: Milliken & Company
    Inventor: Russell A. Stapleton
  • Patent number: 10246558
    Abstract: A composition comprises a first siloxane compound comprising at least one cyclic siloxane moiety and a first salt, the first salt comprising a conjugate base of a volatile organic acid. A method for producing a cross-linked siloxane network comprises the steps of providing a first siloxane compound comprising at least one cyclic siloxane moiety, providing a first salt comprising a conjugate base of a volatile organic acid, combining the first siloxane compound and the first salt to produce a reaction mixture, heating the reaction mixture to a temperature sufficient for the first salt to open the ring of the cyclic siloxane moiety, and maintaining the reaction mixture at an elevated temperature so that at least a portion of the opened cyclic siloxane moieties react with each other to produce a cross-linked siloxane network.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: April 2, 2019
    Assignee: Milliken & Company
    Inventors: Sudhanshu Srivastava, Sasha Stankovich, Michael E. Wilson, Robbie W. J. Hanssen, Eduardo Torres, Cliferson Thivierge, Russell A. Stapleton, Eric B. Monroe
  • Publication number: 20180163000
    Abstract: A method for producing a cross-linked siloxane network comprises the steps of: (a) providing a first part comprising (i) a first siloxane compound comprising at least one cyclic siloxane moiety and (ii) a second siloxane compound comprising a plurality of siloxane moieties, (b) providing a second part, the second part comprising a hydroxide salt, (c) combining the first part and the second part to produce a reaction mixture, (d) heating the reaction mixture to a temperature sufficient for the hydroxide salt to open the ring of the cyclic siloxane moiety, and (e) maintaining the reaction mixture at an elevated temperature so that at least a portion of the opened cyclic siloxane moieties react to produce a cross-linked siloxane network.
    Type: Application
    Filed: October 17, 2017
    Publication date: June 14, 2018
    Inventors: Yunzhang Wang, Xinfei Yu, Russell A. Stapleton, Michael E. Wilson, Eduardo Torres, Sudhanshu Srivastava, Richard Lawson, Robbie W.J.M. Hanssen
  • Publication number: 20180057637
    Abstract: A method for producing a cross-linked siloxane network comprises the steps of: (a) providing a first part comprising (i) a first siloxane compound comprising at least one cyclic siloxane moiety, (ii) an inorganic particulate material, and (iii) an aminosilane compound, (b) providing a second part, the second part comprising a hydroxide salt, (c) combining the first part and the second part to produce a reaction mixture, (d) heating the reaction mixture to a temperature sufficient for the hydroxide salt to open the ring of the cyclic siloxane moiety, and (e) maintaining the reaction mixture at an elevated temperature so that at least a portion of the opened cyclic siloxane moieties react to produce a cross-linked siloxane network.
    Type: Application
    Filed: July 31, 2017
    Publication date: March 1, 2018
    Inventor: Russell A. Stapleton
  • Publication number: 20170335065
    Abstract: A composition comprises a first siloxane compound comprising at least one cyclic siloxane moiety and a first salt, the first salt comprising a conjugate base of a volatile organic acid. A method for producing a cross-linked siloxane network comprises the steps of providing a first siloxane compound comprising at least one cyclic siloxane moiety, providing a first salt comprising a conjugate base of a volatile organic acid, combining the first siloxane compound and the first salt to produce a reaction mixture, heating the reaction mixture to a temperature sufficient for the first salt to open the ring of the cyclic siloxane moiety, and maintaining the reaction mixture at an elevated temperature so that at least a portion of the opened cyclic siloxane moieties react with each other to produce a cross-linked siloxane network.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 23, 2017
    Inventors: Sudhanshu Srivastava, Sasha Stankovich, Michael E. Wilson, Robbie W.J. Hanssen, Eduardo Torres, Cliferson Thivierge, Russell A. Stapleton, Eric B. Monroe
  • Publication number: 20170335064
    Abstract: A method for producing a cross-linked siloxane network comprises the steps of: (a) providing a first part comprising a first siloxane compound and a cure inhibitor, (b) providing a second part, the second part comprising a hydroxide salt, (c) combining the first part and the second part to produce a reaction mixture, (d) heating the reaction mixture to a temperature sufficient for the hydroxide salt to open the ring of the cyclic siloxane moiety, and (e) maintaining the reaction mixture at an elevated temperature so that at least a portion of the opened cyclic siloxane moieties react with each other to produce a cross-linked siloxane network.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 23, 2017
    Inventors: Russell A. Stapleton, Sudhanshu Srivastava, Sasha Stankovich, Robbie W.J. Hanssen, Yunzhang Wang
  • Patent number: 9718927
    Abstract: A siloxane compound comprises a plurality of siloxane repeating units and at least a portion of the siloxane repeating units are cyclosiloxane repeating units conforming to a specified structure. A process for producing such siloxane compounds is also provided. A process and kit for producing a cross-linked silicone polymer using the described siloxane compounds is also provided. A light emitting diode (LED) comprises an encapsulant, and the encapsulant comprises a cross-linked silicone polymer produced from the described siloxane compounds.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: August 1, 2017
    Assignee: Milliken & Company
    Inventors: Yuzhou Liu, Yunzhang Wang, Russell A. Stapleton
  • Patent number: 9530946
    Abstract: A siloxane compound comprises a plurality of siloxane repeating units and at least a portion of the siloxane repeating units are cyclosiloxane repeating units conforming to a specified structure. A process for producing such siloxane compounds is also provided. A process and kit for producing a cross-linked silicone polymer using the described siloxane compounds is also provided. A light emitting diode (LED) comprises an encapsulant, and the encapsulant comprises a cross-linked silicone polymer produced from the described siloxane compounds.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: December 27, 2016
    Assignee: Milliken & Company
    Inventors: Yuzhou Liu, Yunzhang Wang, Russell A. Stapleton
  • Publication number: 20160289390
    Abstract: A siloxane compound comprises a plurality of siloxane repeating units and at least a portion of the siloxane repeating units are cyclosiloxane repeating units conforming to a specified structure. A process for producing such siloxane compounds is also provided. A process and kit for producing a cross-linked silicone polymer using the described siloxane compounds is also provided. A light emitting diode (LED) comprises an encapsulant, and the encapsulant comprises a cross-linked silicone polymer produced from the described siloxane compounds.
    Type: Application
    Filed: June 13, 2016
    Publication date: October 6, 2016
    Inventors: Yuzhou Liu, Yunzhang Wang, Russell A. Stapleton
  • Patent number: 9388284
    Abstract: A siloxane compound comprises a plurality of siloxane repeating units and at least a portion of the siloxane repeating units are cyclosiloxane repeating units conforming to a specified structure. A process for producing such siloxane compounds is also provided. A process and kit for producing a cross-linked silicone polymer using the described siloxane compounds is also provided. A light emitting diode (LED) comprises an encapsulant, and the encapsulant comprises a cross-linked silicone polymer produced from the described siloxane compounds.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: July 12, 2016
    Assignee: Milliken & Company
    Inventors: Yuzhou Liu, Yunzhang Wang, Russell A. Stapleton
  • Patent number: 9093448
    Abstract: In a first aspect of the present invention, a method for manufacturing a flip chip package is provided comprising the steps of a) providing a chip having electrically conductive pads on an active surface thereof, b) coating at least a portion the chip with a protectant composition comprising a polymerizable component comprising a thermosetting epoxy resin, at least 50 weight percent of a substantially transparent filler having a coefficient of thermal expansion of less than 10 ppm/° C., a photoinitator, and a solvent carrier, wherein the protectant composition comprises a thixotropic index of less than 1.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: July 28, 2015
    Assignee: LORD Corporation
    Inventor: Russell A. Stapleton
  • Patent number: 8871878
    Abstract: The present invention generally relates to a new method of polymerizing ethylene. In one embodiment, the present invention relates to compounds utilized in the polymerization of ethylene and to a synthesis/polymerization method that uses same. In another embodiment, branched polyethylene is synthesized from an ethylene monomer using, in this embodiment, at least one nickel iminophosphonamide (PN2) complex. In still another embodiment, the reaction of (phenyl)(triphenylphosphine)(diphenyl-bis(trimethylsilylimino)phosphorato)-nickel, with Rh(acac) (C2H4)2 and ethylene yield a branched polyethylene. In an alternative of this embodiment, the reaction of (phenyl)(triphenylphosphine)(methyl-cis(trimethylsilyl)amino-bis(trimethylsilylimino)phosphorato)-nickel and ethylene, with or without Ni(COD)2, yields a branched polyethylene.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: October 28, 2014
    Assignee: The University of Akron
    Inventors: Scott Collins, Russell A Stapleton
  • Publication number: 20140306259
    Abstract: A siloxane compound comprises a plurality of siloxane repeating units and at least a portion of the siloxane repeating units are cyclosiloxane repeating units conforming to a specified structure. A process for producing such siloxane compounds is also provided. A process and kit for producing a cross-linked silicone polymer using the described siloxane compounds is also provided. A light emitting diode (LED) comprises an encapsulant, and the encapsulant comprises a cross-linked silicone polymer produced from the described siloxane compounds.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 16, 2014
    Applicant: MILLIKEN & COMPANY
    Inventors: Yuzhou Liu, Yunzhang Wang, Russell A. Stapleton
  • Publication number: 20140309380
    Abstract: A siloxane compound comprises a plurality of siloxane repeating units and at least a portion of the siloxane repeating units are cyclosiloxane repeating units conforming to a specified structure. A process for producing such siloxane compounds is also provided. A process and kit for producing a cross-linked silicone polymer using the described siloxane compounds is also provided. A light emitting diode (LED) comprises an encapsulant, and the encapsulant comprises a cross-linked silicone polymer produced from the described siloxane compounds.
    Type: Application
    Filed: April 3, 2014
    Publication date: October 16, 2014
    Applicant: MILLIKEN & COMPANY
    Inventors: Yuzhou Liu, Yunzhang Wang, Russell A. Stapleton
  • Publication number: 20140024175
    Abstract: In a first aspect of the present invention, a method for manufacturing a flip chip package is provided comprising the steps of a) providing a chip having electrically conductive pads on an active surface thereof, b) coating at least a portion the chip with a protectant composition comprising a polymerizable component comprising a thermosetting epoxy resin, at least 50 weight percent of a substantially transparent filler having a coefficient of thermal expansion of less than 10 ppm/° C., a photoinitator, and a solvent carrier, wherein the protectant composition comprises a thixotropic index of less than 1.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: LORD CORPORATION
    Inventor: Russell A. STAPLETON
  • Patent number: 8568961
    Abstract: In a first aspect of the present invention, a method for manufacturing a flip chip package is provided comprising the steps of a) providing a chip having electrically conductive pads on an active surface thereof, b) coating at least a portion the chip with a protectant composition comprising a polymerizable component comprising a thermosetting epoxy resin, at least 50 weight percent of a substantially transparent filler having a coefficient of thermal expansion of less than 10 ppm/° C., a photoinitator, and a solvent carrier, wherein the protectant composition comprises a thixotropic index of less than 1.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 29, 2013
    Assignee: Lord Corporation
    Inventor: Russell A. Stapleton
  • Publication number: 20130244383
    Abstract: Latent thermal initiators and protectant compositions that remain shelf stable at elevated temperatures, yet readily cure during a solder bump reflow process or other high temperature processing. The thermal initiators comprise thermally labile cation-anion pairs where the blocked cation prevents cure at low temperatures, and the unblocked cation initiates cure at high temperatures. Also provided is a method of making a preferred initiator comprising the cation [N-(4-methylbenzyl)-N,N-dimethylanalinium] and the anion [N(SO2CF3)2].
    Type: Application
    Filed: April 26, 2013
    Publication date: September 19, 2013
    Applicant: LORD Corporation
    Inventors: RUSSELL A. STAPLETON, MELISSA KERN, MATTHEW W. SMITH
  • Publication number: 20120145321
    Abstract: Latent thermal initiators and protectant compositions that remain shelf stable at elevated temperatures, yet readily cure during a solder bump reflow process or other high temperature processing. The thermal initiators comprise thermally labile cation-anion pairs where the blocked cation prevents cure at low temperatures, and the unblocked cation initiates cure at high temperatures. Also provided is a method of making a preferred initiator comprising the cation [N-(4-methylbenzyl)-N,N-dimethylanalinium] and the anion [N(SO2CF3)2].
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Inventors: Russell A. Stapleton, Melissa R. Kern, Matthew W. Smith
  • Publication number: 20110287583
    Abstract: A method for assembling a microelectronic device is provided comprising the step of adhering a die to a substrate using a convex die attachment process. The convex die attachment process generally comprises a) providing a die having an underfill material thereon, b) picking up and inverting the die, c) heating the underfill until it liquefies at least slightly and forms a convex surface, and d) placing the die on a substrate.
    Type: Application
    Filed: January 25, 2011
    Publication date: November 24, 2011
    Inventor: Russell A. Stapleton