Patents by Inventor Russell Carlton McMULLAN

Russell Carlton McMULLAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10461075
    Abstract: A high TCR tungsten resistor on a reverse biased Schottky diode. A high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A high TCR tungsten resistor embedded in a intermetal dielectric layer above a lower interconnect layer and below an upper interconnect layer. A method of forming a high TCR tungsten resistor on a reverse biased Schottky diode. A method of forming high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A method of forming high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A method of forming high TCR tungsten resistor embedded in a inter metal dielectric layer above a lower interconnect layer and below an upper interconnect layer.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: October 29, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Russell Carlton McMullan, Binu Kamblath Pushkarakshan, Subramanian J. Narayan, Swaminathan Sankaran, Keith Edmund Kunz
  • Patent number: 9985018
    Abstract: A high TCR tungsten resistor on a reverse biased Schottky diode. A high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A high TCR tungsten resistor embedded in a intermetal dielectric layer above a lower interconnect layer and below an upper interconnect layer. A method of forming a high TCR tungsten resistor on a reverse biased Schottky diode. A method of forming high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A method of forming high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A method of forming high TCR tungsten resistor embedded in a inter metal dielectric layer above a lower interconnect layer and below an upper interconnect layer.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: May 29, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Russell Carlton McMullan, Binu Kamblath Pushkarakshan, Subramanian J. Narayan, Swaminathan Sankaran, Keith Edmund Kunz
  • Patent number: 9966373
    Abstract: Elongated metal contacts with longitudinal axes that lie in a first direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie in the first direction, and elongated metal contacts with longitudinal axes that lie a second direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie the second direction, where the second direction lies orthogonal to the first direction.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: May 8, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Russell Carlton McMullan, Kamel Benaissa
  • Publication number: 20170133366
    Abstract: Elongated metal contacts with longitudinal axes that lie in a first direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie in the first direction, and elongated metal contacts with longitudinal axes that lie a second direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie the second direction, where the second direction lies orthogonal to the first direction.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Russell Carlton McMullan, Kamel Benaissa
  • Patent number: 9589983
    Abstract: An integrated circuit has a buried interconnect in the buried oxide layer connecting a body of a MOS transistor to a through-substrate via (TSV). The buried interconnect extends laterally past the TSV. The integrated circuit is formed by starting with a substrate, forming the buried oxide layer with the buried interconnect at a top surface of the substrate, and forming a semiconductor device layer over the buried oxide layer. The MOS transistor is formed in the semiconductor device layer so that the body makes an electrical connection to the buried interconnect. Subsequently, the TSV is formed through a bottom surface of the substrate so as to make an electrical connection to the buried interconnect in the buried oxide layer. A body of a transistor is electrically coupled to the TSV through the buried interconnect.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: March 7, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Russell Carlton McMullan
  • Patent number: 9583609
    Abstract: Elongated metal contacts with longitudinal axes that lie in a first direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie in the first direction, and elongated metal contacts with longitudinal axes that lie a second direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie the second direction, where the second direction lies orthogonal to the first direction.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: February 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Russell Carlton McMullan, Kamel Benaissa
  • Publication number: 20160284731
    Abstract: An integrated circuit has a buried interconnect in the buried oxide layer connecting a body of a MOS transistor to a through-substrate via (TSV). The buried interconnect extends laterally past the TSV. The integrated circuit is formed by starting with a substrate, forming the buried oxide layer with the buried interconnect at a top surface of the substrate, and forming a semiconductor device layer over the buried oxide layer. The MOS transistor is formed in the semiconductor device layer so that the body makes an electrical connection to the buried interconnect. Subsequently, the TSV is formed through a bottom surface of the substrate so as to make an electrical connection to the buried interconnect in the buried oxide layer. A body of a transistor is electrically coupled to the TSV through the buried interconnect.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventor: Russell Carlton McMullan
  • Patent number: 9385140
    Abstract: An integrated circuit has a buried interconnect in the buried oxide layer connecting a body of a MOS transistor to a through-substrate via (TSV). The buried interconnect extends laterally past the TSV. The integrated circuit is formed by starting with a substrate, forming the buried oxide layer with the buried interconnect at a top surface of the substrate, and forming a semiconductor device layer over the buried oxide layer. The MOS transistor is formed in the semiconductor device layer so that the body makes an electrical connection to the buried interconnect. Subsequently, the TSV is formed through a bottom surface of the substrate so as to make an electrical connection to the buried interconnect in the buried oxide layer. A body of a transistor is electrically coupled to the TSV through the buried interconnect.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: July 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Russell Carlton McMullan
  • Publication number: 20160071839
    Abstract: A high TCR tungsten resistor on a reverse biased Schottky diode. A high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A high TCR tungsten resistor embedded in a intermetal dielectric layer above a lower interconnect layer and below an upper interconnect layer. A method of forming a high TCR tungsten resistor on a reverse biased Schottky diode. A method of forming high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A method of forming high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A method of forming high TCR tungsten resistor embedded in a inter metal dielectric layer above a lower interconnect layer and below an upper interconnect layer.
    Type: Application
    Filed: September 24, 2015
    Publication date: March 10, 2016
    Inventors: Russell Carlton McMullan, Binu Kamblath Pushkarakshan, Subramanian J. Narayan, Swaminathan Sankaran, Keith Edmund Kunz
  • Publication number: 20160071838
    Abstract: A high TCR tungsten resistor on a reverse biased Schottky diode. A high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A high TCR tungsten resistor embedded in a intermetal dielectric layer above a lower interconnect layer and below an upper interconnect layer. A method of forming a high TCR tungsten resistor on a reverse biased Schottky diode. A method of forming high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A method of forming high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A method of forming high TCR tungsten resistor embedded in a inter metal dielectric layer above a lower interconnect layer and below an upper interconnect layer.
    Type: Application
    Filed: September 24, 2015
    Publication date: March 10, 2016
    Inventors: Russell Carlton McMullan, Binu Kamblath Pushkarakshan, Subramanian J. Narayan, Swaminathan Sankaran, Keith Edmund Kunz
  • Patent number: 9184226
    Abstract: A high TCR tungsten resistor on a reverse biased Schottky diode. A high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A high TCR tungsten resistor embedded in a intermetal dielectric layer above a lower interconnect layer and below an upper interconnect layer. A method of forming a high TCR tungsten resistor on a reverse biased Schottky diode. A method of forming high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A method of forming high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A method of forming high TCR tungsten resistor embedded in a inter metal dielectric layer above a lower interconnect layer and below an upper interconnect layer.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: November 10, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Russell Carlton McMullan, Binu Kamblath Pushkarakshan, Subramanian J. Narayan, Swaminathan Sankaran, Keith Edmund Kunz
  • Patent number: 9093315
    Abstract: An integrated circuit containing an SAR SRAM and CMOS logic, in which sidewall spacers on the gate extension of the SAR SRAM cell are thinner than sidewall spacers on the logic PMOS gates, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively etch the sidewall spacers on the on the gate extension of the SAR SRAM cell, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively implanting extra p-type dopants in the drain node SRAM PSD layer, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact.
    Type: Grant
    Filed: December 8, 2013
    Date of Patent: July 28, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shaofeng Yu, Russell Carlton McMullan, Wah Kit Loh
  • Patent number: 8962419
    Abstract: A process of forming a CMOS integrated circuit by forming a first stressor layer over two MOS transistors of opposite polarity, removing a portion of the first stressor layer from the first transistor, and forming a second stressor layer over the two transistors. A source/drain anneal is performed, crystallizing amorphous regions of silicon in the gates of the two transistors, and subsequently removing the stressor layers. A process of forming a CMOS integrated circuit by forming two transistors of opposite polarity, forming a two stressor layers over the transistors, annealing the integrated circuit, removing the stressor layers, and siliciding the transistors. A process of forming a CMOS integrated circuit with an NMOS transistor and a PMOS transistor using a stress memorization technique, by removing the stressor layers with wet etch processes.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: February 24, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Russell Carlton McMullan, Dong Joo Bae
  • Publication number: 20150011061
    Abstract: A process of forming a CMOS integrated circuit by forming a first stressor layer over two MOS transistors of opposite polarity, removing a portion of the first stressor layer from the first transistor, and forming a second stressor layer over the two transistors. A source/drain anneal is performed, crystallizing amorphous regions of silicon in the gates of the two transistors, and subsequently removing the stressor layers. A process of forming a CMOS integrated circuit by forming two transistors of opposite polarity, forming a two stressor layers over the transistors, annealing the integrated circuit, removing the stressor layers, and siliciding the transistors. A process of forming a CMOS integrated circuit with an NMOS transistor and a PMOS transistor using a stress memorization technique, by removing the stressor layers with wet etch processes.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 8, 2015
    Inventors: Russell Carlton McMULLAN, Dong Joo BAE
  • Publication number: 20140346609
    Abstract: An integrated circuit containing an SAR SRAM and CMOS logic, in which sidewall spacers on the gate extension of the SAR SRAM cell are thinner than sidewall spacers on the logic PMOS gates, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively etch the sidewall spacers on the on the gate extension of the SAR SRAM cell, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively implanting extra p-type dopants in the drain node SRAM PSD layer, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact.
    Type: Application
    Filed: December 8, 2013
    Publication date: November 27, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Shaofeng Yu, Russell Carlton McMullan, Wah Kit Loh
  • Patent number: 8871587
    Abstract: A process of forming a CMOS integrated circuit by forming a first stressor layer over two MOS transistors of opposite polarity, removing a portion of the first stressor layer from the first transistor, and forming a second stressor layer over the two transistors. A source/drain anneal is performed, crystallizing amorphous regions of silicon in the gates of the two transistors, and subsequently removing the stressor layers. A process of forming a CMOS integrated circuit by forming two transistors of opposite polarity, forming a two stressor layers over the transistors, annealing the integrated circuit, removing the stressor layers, and siliciding the transistors. A process of forming a CMOS integrated circuit with an NMOS transistor and a PMOS transistor using a stress memorization technique, by removing the stressor layers with wet etch processes.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: October 28, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Russell Carlton McMullan, Dong Joo Bae
  • Publication number: 20140284725
    Abstract: Elongated metal contacts with longitudinal axes that lie in a first direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie in the first direction, and elongated metal contacts with longitudinal axes that lie a second direction are formed to make electrical connections to elongated source and drain regions with longitudinal axes that lie the second direction, where the second direction lies orthogonal to the first direction.
    Type: Application
    Filed: March 25, 2013
    Publication date: September 25, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Russell Carlton McMullan, Kamel Benaissa
  • Patent number: 8603875
    Abstract: An integrated circuit containing an SAR SRAM and CMOS logic, in which sidewall spacers on the gate extension of the SAR SRAM cell are thinner than sidewall spacers on the logic PMOS gates, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively etch the sidewall spacers on the on the gate extension of the SAR SRAM cell, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively implanting extra p-type dopants in the drain node SRAM PSD layer, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Shaofeng Yu, Russell Carlton McMullan, Wah Kit Loh
  • Publication number: 20130207221
    Abstract: A high TCR tungsten resistor on a reverse biased Schottky diode. A high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A high TCR tungsten resistor embedded in a intermetal dielectric layer above a lower interconnect layer and below an upper interconnect layer. A method of forming a high TCR tungsten resistor on a reverse biased Schottky diode. A method of forming high TCR tungsten resistor on an unsilicided polysilicon platform geometry. A method of forming high TCR tungsten resistor between two parallel polysilicon leads on remaining contact etch stop dielectric. A method of forming high TCR tungsten resistor embedded in a inter metal dielectric layer above a lower interconnect layer and below an upper interconnect layer.
    Type: Application
    Filed: August 15, 2012
    Publication date: August 15, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Russell Carlton McMullan, Binu Kamblath Pushkarakshan, Subramanian J. Narayan, Swaminathan Sankaran, Keith Edmund Kunz
  • Publication number: 20120104510
    Abstract: An integrated circuit containing an SAR SRAM and CMOS logic, in which sidewall spacers on the gate extension of the SAR SRAM cell are thinner than sidewall spacers on the logic PMOS gates, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively etch the sidewall spacers on the on the gate extension of the SAR SRAM cell, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact. A process of forming an integrated circuit containing an SAR SRAM and CMOS logic, including selectively implanting extra p-type dopants in the drain node SRAM PSD layer, so that the depth of the drain node SRAM PSD layer is maintained under the stretch contact.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shaofeng Yu, Russell Carlton McMullan, Wah Kit Loh