Patents by Inventor Russell Duane

Russell Duane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220069067
    Abstract: In some examples, an integrated circuit comprises a substrate; a first metal layer and a second metal layer positioned above the substrate; a first composite dielectric layer located on the first metal layer, wherein the first composite dielectric layer comprises a first anti-reflective coating; a second composite dielectric layer positioned on the second metal layer, wherein the second composite dielectric layer comprises a second anti-reflective coating; and a capacitor metal layer disposed over the first composite dielectric layer.
    Type: Application
    Filed: October 13, 2021
    Publication date: March 3, 2022
    Inventors: Poornika FERNANDES, David Matthew CURRAN, Stephen Arlon MEISNER, Bhaskar SRINIVASAN, Guruvayurappan S. MATHUR, Scott William JESSEN, Shih Chang CHANG, Russell Duane FIELDS, Thomas Terrance LYNCH
  • Patent number: 11171200
    Abstract: In some examples, an integrated circuit comprises a substrate; a first metal layer and a second metal layer positioned above the substrate; a first composite dielectric layer located on the first metal layer, wherein the first composite dielectric layer comprises a first anti-reflective coating; a second composite dielectric layer positioned on the second metal layer, wherein the second composite dielectric layer comprises a second anti-reflective coating; and a capacitor metal layer disposed over the first composite dielectric layer.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: November 9, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Poornika Fernandes, David Matthew Curran, Stephen Arion Meisner, Bhaskar Srinivasan, Guruvayurappan S. Mathur, Scott William Jessen, Shih Chang Chang, Russell Duane Fields, Thomas Terrance Lynch
  • Publication number: 20210098565
    Abstract: In some examples, an integrated circuit comprises a substrate; a first metal layer and a second metal layer positioned above the substrate; a first composite dielectric layer located on the first metal layer, wherein the first composite dielectric layer comprises a first anti-reflective coating; a second composite dielectric layer positioned on the second metal layer, wherein the second composite dielectric layer comprises a second anti-reflective coating; and a capacitor metal layer disposed over the first composite dielectric layer.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Poornika FERNANDES, David Matthew CURRAN, Stephen Arlon MEISNER, Bhaskar SRINIVASAN, Guruvayurappan S. MATHUR, Scott William JESSEN, Shih Chang CHANG, Russell Duane FIELDS, Thomas Terrance LYNCH
  • Publication number: 20080315260
    Abstract: An open-base semiconductor diode device has an emitter, base, and collector layers. The layers are configured and doped such that the device has an IV characteristic with: i. a punchthrough region beginning at a voltage Vpt with positive resistance, followed by, and ii. an avalanche region including a positive resistance stage beginning with conductivity modulation at Vcrit and Icrit and having a resistance Rcrit, iii. wherein the values of Vcrit, Icrit and Rcrit are set according to the layer configuration and doping. The device may have a double-base structure, and the width of a lower-doped base region may be minimised such that current density Jcrit at which the conductivity modulation occurs due to avalanche is increased. In one example, the device comprises a N-N+ or a P-P+ double-emitter. Thickness of N? or P? layers may be minimised such that the current-carrying capability is maximised and the doping of this layer does not affect the current-carrying capability of the device.
    Type: Application
    Filed: March 22, 2006
    Publication date: December 25, 2008
    Inventor: Russell Duane
  • Patent number: 6639253
    Abstract: A semiconductor overvoltage protection device in the form of a four layer diode has first and third layers of a first conductivity semiconductor material, second and fourth layers of a second conductivity type semiconductor material and a first buried region of the first conductivity type in the third layer adjacent to the junction between the second and third layers. The buried region has a greater impurity concentration than the third layer. The first layer is penetrated by a plurality of dots of the second layer extending through the first layer and the first buried region lies wholly beneath the second layer and is laterally offset from the dots and the first layer.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: October 28, 2003
    Assignee: Bourns Limited
    Inventors: Russell Duane, Jeremy Paul Smith, Steven Wilton Byatt
  • Patent number: 6603155
    Abstract: A semiconductor device has a PN junction between first and second regions of the device in which in the intended operation of the device reverse breakdown of the junction occurs. The first region is of lower impurity concentration than the second region and a first buried region of the same conductivity type as and of higher impurity concentration than the first region is provided in the first region adjacent to the junction. A second buried region of the same conductivity type as and of higher impurity concentration than the first buried region is provided in the first buried region and one of the first and second buried regions is formed with a plurality of separate regions of small area arranged so that reverse breakdown of the junction preferentially occurs through the second buried region.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: August 5, 2003
    Assignee: Power Innovations, Ltd.
    Inventors: Russell Duane, Jeremy Paul Smith, Steven Wilton Byatt
  • Publication number: 20020190324
    Abstract: A semiconductor device has a PN junction between first and second regions of the device in which in the intended operation of the device reverse breakdown of the junction occurs. The first region is of lower impurity concentration than the second region and a first buried region of the same conductivity type as and of higher impurity concentration than the first region is provided in the first region adjacent to the junction. A second buried region of the same conductivity type as and of higher impurity concentration than the first buried region is provided in the first buried region and one of the first and second buried regions is formed with a plurality of separate regions of small area arranged so that reverse breakdown of the junction preferentially occurs through the second buried region.
    Type: Application
    Filed: April 4, 2002
    Publication date: December 19, 2002
    Inventors: Russell Duane, Jeremy Paul Smith, Steven Wilton Byatt
  • Publication number: 20020185645
    Abstract: A semiconductor overvoltage protection device in the form of a four layer diode has first and third layers of a first conductivity semiconductor material, second and fourth layers of a second conductivity type semiconductor material and a first buried region of the first conductivity type in the third layer adjacent to the junction between the second and third layers. The buried region has a greater impurity concentration than the third layer. The first layer is penetrated by a plurality of dots of the second layer extending through the first layer and the first buried region lies wholly beneath the second layer and is laterally offset from the dots and the first layer.
    Type: Application
    Filed: April 4, 2002
    Publication date: December 12, 2002
    Inventors: Russell Duane, Jeremy Paul Smith, Steven Wilton Byatt
  • Patent number: 6310799
    Abstract: A negative resistance device (NRD) has a MOSFET-like structure, and is biased by shorting the gate and source together at a fixed applied potential and applying a different fixed potential to the drain, and sweeping the bulk potential towards the drain potential, causing the bulk current to exhibit a negative resistance characteristic. The NRD may be used in a memory circuit (10) in which a resistor (R) is connected between the bulk (2) and a fixed potential. Two States of the circuit at which the current through the resistor matches that through the bulk of the NRD are stable, providing for bistable memory operation.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: October 30, 2001
    Assignee: National University of Ireland, Cork
    Inventors: Russell Duane, Alan Mathewson, Ann Concannon
  • Publication number: 20010005327
    Abstract: A negative resistance device (NRD) has a MOSFET-like structure, and is biased by:
    Type: Application
    Filed: December 22, 2000
    Publication date: June 28, 2001
    Inventors: Russell Duane, Alan Mathewson, Ann Concannon