Patents by Inventor Russell H. Oelfke

Russell H. Oelfke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150362251
    Abstract: A system and methods for processing a feed gas in a column are provided herein. A method includes feeding a feed gas into a port of a sleeve disposed around at least a portion of a periphery of the column. The sleeve includes a space between an outer wall of the column and an inner wall of the column. The sleeve releases the feed gas into the column through an opening disposed at an opposite end of the sleeve from the port.
    Type: Application
    Filed: April 16, 2015
    Publication date: December 17, 2015
    Inventor: Russell H. Oelfke
  • Publication number: 20150316316
    Abstract: Hydrocarbon processing systems and a method for liquefied natural gas (LNG) production are described herein. The hydrocarbon processing system includes a fluorocarbon refrigeration system configured to cool a natural gas to produce LNG using a mixed fluorocarbon refrigerant and a nitrogen rejection unit (NRU) configured to remove nitrogen from the LNG.
    Type: Application
    Filed: December 13, 2013
    Publication date: November 5, 2015
    Inventors: Russell H. OELFKE, Michael R. MILLER
  • Publication number: 20150285553
    Abstract: Systems and a method for the formation of a liquefied natural gas (LNG) are disclosed herein. The system includes a first fluorocarbon refrigeration system configured to chill a natural gas using a first fluorocarbon refrigerant and a second fluorocarbon refrigeration system configured to further chill the natural gas using a second fluorocarbon refrigerant. The system also includes a nitrogen refrigeration system configured to cool the natural gas using a nitrogen refrigerant to produce LNG and a nitrogen rejection unit configured to remove nitrogen from the LNG. As an alternative embodiment, the nitrogen refrigeration system can be replaced by a methane autorefrigeration system.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 8, 2015
    Inventors: Russell H. Oelfke, Jorge Vincentelli
  • Publication number: 20150013379
    Abstract: Systems and a method for the formation of a liquefied natural gas (LNG) are disclosed herein. The system includes a refrigeration system configured to chill a natural gas using a refrigerant mixture including a noble gas. The system also includes an autorefrigeration system configured to use the natural g self-refrigerant to form the LNG from the natural gas.
    Type: Application
    Filed: March 4, 2013
    Publication date: January 15, 2015
    Inventor: Russell H. Oelfke
  • Publication number: 20150013377
    Abstract: Embodiments described herein provide methods and systems for separating a mixed ethane and CO2. A method described includes generating a liquid stream including ethane and CO2. The liquid stream is flashed to form an ethane vapor stream and solid CO2. The solid CO2 is accumulated in an accumulation vessel and the gas is removed from the top of the accumulation vessel.
    Type: Application
    Filed: March 8, 2013
    Publication date: January 15, 2015
    Inventor: Russell H. Oelfke
  • Publication number: 20140338395
    Abstract: Embodiments described herein provide methods and systems for generating a CO2 product stream. A method described includes generating a liquid acid gas stream including H2S and CO2. The liquid acid gas stream is flashed to form a first vapor stream and a bottom stream. The bottom stream is fractionated to form a second vapor stream and a liquid acid waste stream. The first vapor stream and the second vapor stream are combined to form a combined vapor stream. The combined vapor stream is treated in an absorption column to remove excess H2S, forming the CO2 product stream.
    Type: Application
    Filed: November 16, 2012
    Publication date: November 20, 2014
    Inventors: Russell H. Oelfke, Tor Vestad
  • Publication number: 20140250911
    Abstract: The present techniques are directed to a system and method for generating power and producing liquefied natural gas (LNG). The system includes a power plant configured to generate power, wherein an exhaust gas from the power plant provides a gas mixture including nitrogen and carbon dioxide. The system also includes a dehydration system configured to dehydrate the gas mixture to generate a nitrogen refrigerant stream and a refrigeration system configured to produce LNG from a natural gas stream using the nitrogen refrigerant stream.
    Type: Application
    Filed: February 17, 2014
    Publication date: September 11, 2014
    Inventors: Richard A. Huntington, Stanley O. Uptigrove, Russell H. Oelfke, O. Angus Sites
  • Publication number: 20140137599
    Abstract: A system and methods for recovering helium from a natural gas stream are disclosed. The system may include a cold box configured to chill a feed stream and a cryogenic stripper column configured to separate the feed stream into a gaseous top stream and a liquid bottom stream. The gaseous top stream includes an enhanced concentration of helium. A Joule-Thompson (J-T) valve is configured to flash at least a portion of the liquid bottom stream into a first gaseous stream into a heat exchanger in a cold box to chill the feed stream.
    Type: Application
    Filed: June 18, 2012
    Publication date: May 22, 2014
    Inventors: Russell H. Oelfke, Donald Victory
  • Publication number: 20140083109
    Abstract: Systems, methods, and apparatus are provided for generating power in combined low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust from multiple turbine systems is combined, cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream. Portions of the recycled exhaust streams and the product streams may be used as diluents to regulate combustion in each combustor of the turbine systems.
    Type: Application
    Filed: March 5, 2012
    Publication date: March 27, 2014
    Inventors: Russell H. Oelfke, Richard A. Huntington, Sulabh K. Dhanuka, Dennis M. O'Dea, Robert D. Denton, Omar Angus Sites, Franklin F. Mittricker
  • Publication number: 20140013766
    Abstract: Systems, methods, and apparatus are provided for generating power in low emission turbine systems and separating the exhaust into rich CO2 and lean CO2 streams. In one or more embodiments, the exhaust is separated at an elevated pressure, such as between a high-pressure expansion stage and a low-pressure expansion stage.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 16, 2014
    Inventors: Franklin F. Mittricker, Sulabh K. Dhanuka, Richard A. Huntington, Omar Angus Sites, Dennis M. O'Dea, Russell H. Oelfke
  • Publication number: 20140007590
    Abstract: Systems, methods, and apparatus are provided for generating power in low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust is cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 9, 2014
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Omer Angus Sites, Sulabh K. Dhanuka, Dennis M. O'Dea, Russell H. Oelfke, Robert D. Denton
  • Publication number: 20130104562
    Abstract: Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system adapted to combust a fuel and an oxidant in the presence of a compressed recycle stream to provide mechanical power and a gaseous exhaust. The compressed recycle stream acts to moderate the temperature of the combustion process. A boost compressor can boost the pressure of the gaseous exhaust before being compressed into the compressed recycle stream. A purge stream may be tapped off from the compressed recycle stream and directed to a C02 separator which discharges C02 and a nitrogen-rich gas, which may be expanded in a gas expander to generate additional mechanical power.
    Type: Application
    Filed: June 9, 2011
    Publication date: May 2, 2013
    Inventors: Russell H. Oelfke, Moses Minta
  • Publication number: 20130104563
    Abstract: Methods and systems for low emission power generation in combined cycle power plants are provided. One system includes a gas turbine system that stoichiometrically combusts a fuel and an oxidant in the presence of a compressed recycle stream to provide mechanical power and a gaseous exhaust. The compressed recycle stream acts as a diluent to moderate the temperature of the combustion process. A boost compressor can boost the pressure of the gaseous exhaust before being compressed into the compressed recycle stream. A purge stream is tapped off from the compressed recycle stream and directed to a C02 separator which discharges C02 and a nitrogen-rich gas which can be expanded in a gas expander to generate additional mechanical power.
    Type: Application
    Filed: June 9, 2011
    Publication date: May 2, 2013
    Inventors: Russell H. Oelfke, Moses Minta
  • Publication number: 20130086916
    Abstract: Methods and systems for C02 separation for low emission power generation in combined-cycle power plants are provided. One system includes a gas turbine system that stoichiometrically combusts a fuel and an oxidant in the presence of a compressed recycle stream to provide mechanical power and a gaseous exhaust. The compressed recycle stream acts as a diluent to moderate the temperature of the combustion process. A boost compressor can boost the pressure of the gaseous exhaust before being compressed into the compressed recycle stream. A purge stream is tapped off from the compressed recycle stream and directed to a C02 separator configured to absorb C02 from the purge stream using a potassium carbonate solvent.
    Type: Application
    Filed: June 9, 2011
    Publication date: April 11, 2013
    Inventors: Russell H. Oelfke, Moses Minta
  • Patent number: 8156758
    Abstract: Methods and systems for recovery of natural gas liquids (NGL) and a pressurized methane-rich sales gas from liquefied natural gas (LNG) are disclosed. In certain embodiments, LNG passes through a heat exchanger, thereby heating and vaporizing at least a portion of the LNG. The partially vaporized LNG passes to a fractionation column where a liquid stream enriched with ethane plus and a methane-rich vapor stream are withdrawn. The withdrawn methane-rich vapor stream passes through the heat exchanger to condense the vapor and produce a two phase stream, which is separated in a separator into at least a methane-rich liquid portion and a methane-rich gas portion. A pump pressurizes the methane-rich liquid portion prior to vaporization and delivery to a pipeline. The methane-rich gas portion may be compressed and combined with the vaporized methane-rich liquid portion or used as plant site fuel.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: April 17, 2012
    Assignee: Exxonmobil Upstream Research Company
    Inventors: Robert D. Denton, Russell H. Oelfke, Allen E. Brimm
  • Publication number: 20110174017
    Abstract: The invention relates to a process for producing a helium-enriched vapor stream, a methane-enriched vapor stream, and a liquid stream enriched in hydrocarbons heavier than methane from a pressurized, multicomponent, multiphase stream comprising methane (C1), helium (He) and hydrocarbons heavier than methane (C2+). The process includes cooling the multiphase stream to produce at least one vapor stream enriched in helium and at least one liquid stream, withdrawing at least a portion of the at least one vapor stream as a helium-enriched product stream, passing at least a portion of the at least one liquid stream to a demethanizer, withdrawing from the demethanizer a vapor enriched in methane (C1), and withdrawing from the demethanizer a liquid enriched in hydrocarbons heavier than methane (C2+).
    Type: Application
    Filed: July 28, 2009
    Publication date: July 21, 2011
    Inventors: Donald Victory, Michael W. Miles, Russell H. Oelfke
  • Patent number: 6632266
    Abstract: The invention relates to a method of separating one or more components from a multi-component gas stream comprising at least one non-acid gas component and at least one acid gas component. A multi-component gas stream at a pressure above 1,200 psia (82.8 bar) and a temperature above 120° F. (48.9° C.) with the concentration of at least one acid gas component in the gas stream being at least 20 mole percent is passed to a membrane system that selectively separates at least one acid gas component from the multi-component gas stream as a permeate stream. The permeate stream has a pressure at least 20% of the pressure of the feed pressure.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: October 14, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Eugene R. Thomas, Harry W. Deckman, Donald J. Victory, Ronald R. Chance, Russell H. Oelfke
  • Publication number: 20030131726
    Abstract: The invention relates to a method of separating one or more components from a multi-component gas stream comprising at least one non-acid gas component and at least one acid gas component. A multi-component gas stream at a pressure above 1,200 psia (82.8 bar) and a temperature above 120° F. (48.9° C.) with the concentration of at least one acid gas component in the gas stream being at least 20 mole percent is passed to a membrane system that selectively separates at least one acid gas component from the multi-component gas stream as a permeate stream. The permeate stream has a pressure of at least 20% of the pressure of the feed pressure.
    Type: Application
    Filed: September 4, 2002
    Publication date: July 17, 2003
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Eugene R. Thomas, Harry W. Deckman, Donald J. Victory, Ronald R. Chance, Russell H. Oelfke
  • Patent number: 6107531
    Abstract: A method for inhibiting the formation of clathrate hydrates in a fluid having hydrate-forming constituents involves treating the fluid with an inhibitor comprising a substantially water soluble polymer having a polymer backbone .with a pendant C.sub.1 --C.sub.3 alkyl group; the polymer having an average molecular weight between about 1,000 and about 6,000,000. Preferably, the pendant alkyl group is a methyl group. The rate of nucleation, growth, and/or agglomeration of gas hydrate crystals in a petroleum fluid stream Is reduced using the alkylated polymer backbone inhibitor, thereby inhibiting the formation of a hydrate blockage in the pipe conveying the petroleum fluid stream. Test results are disclosed which unexpectedly show that alkylating the polymer backbone with a methyl group will produce a subcooling for the alkylated polymer that is at least about 2.degree. F. (about 1.1.degree. C.) greater than its nonalkylated counterpart.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: August 22, 2000
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Karla S. Colle, Christine A. Costello, Larry D. Talley, Russell H. Oelfke, Enock Berluche
  • Patent number: 5600044
    Abstract: A method for inhibiting the formation of clathrate hydrates in a fluid having hydrate forming constituents is disclosed. More specifically, the method can be used in treating a petroleum fluid stream such as natural gas conveyed in a pipe to inhibit the formation of a hydrate restriction in the pipe. The hydrate inhibitors used for practicing the method are substantially water soluble polymers formed from a N-substituted acrylamide having two nitrogen substituent groups, R.sub.1 and R.sub.2, where R.sub.1 is a hydrocarbon group having from one to ten carbon atoms and zero to four heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, and combinations thereof, and R.sub.2 is a hydrogen atom or a hydrocarbon group having from one to ten carbon atoms selected from the group consisting of carbon, nitrogen, oxygen, and sulfur; alternatively, R.sub.1 and R.sub.
    Type: Grant
    Filed: May 24, 1995
    Date of Patent: February 4, 1997
    Assignee: Exxon Production Research Company
    Inventors: Karla S. Colle, Christine A. Costello, Russell H. Oelfke, Larry D. Talley, John M. Longo, Enoch Berluche