Patents by Inventor Russell J. Koveal, Jr.

Russell J. Koveal, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10351974
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes forming a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C., and the carbon allotropes are separated from a reactor effluent stream.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: July 16, 2019
    Assignees: EXXONMOBIL UPSTREAM RESEARCH COMPANY, SOLID CARBON PRODUCTS, LLC
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, Jr., Terry A. Ring
  • Patent number: 10343104
    Abstract: Systems and a method for removing carbon nanotubes from a continuous reactor effluent are provided herein. The method includes flowing the continuous reactor effluent through a separation vessel, separating carbon nanotubes from the continuous reactor effluent in the separation vessel, and generating a stream including gaseous components from the continuous reactor effluent.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: July 9, 2019
    Assignees: EXXONMOBIL UPSTREAM RESEARCH COMPANY, SOLID CARBON PRODUCTS, LLC
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, Jr., Terry A. Ring
  • Patent number: 9975793
    Abstract: Methods and a system for removing carbon nanotubes from a water stream are provided herein. The system includes a purification vessel, wherein the purification vessel is configured to form a carbon oxide from the carbon nanotubes within the water stream.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: May 22, 2018
    Assignees: EXXONMOBIL UPSTREAM RESEARCH COMPANY, SOLID CARBON PRODUCTS, LLC
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, Jr., Terry A. Ring
  • Patent number: 9663367
    Abstract: Systems and a method for forming carbon allotropes are described. An exemplary reactor system for the production of carbon allotropes includes a hybrid reactor configured to form carbon allotropes from a reactant gas mixture in a Bosch reaction. The hybrid reactor includes at least two distinct zones that perform different functions including reaction, attrition, catalyst separation, or gas separation.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: May 30, 2017
    Assignees: EXXON MOBIL UPSTREAM RESEARCH COMPANY, SOLID CARBON PRODUCTS, LLC
    Inventors: Russell J. Koveal, Jr., Terry A. Ring
  • Patent number: 9505620
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes treating a carbonaceous compound to form a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C. The carbon allotropes are separated from a reactor effluent stream.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: November 29, 2016
    Assignees: EXXONMOBIL UPSTREAM RESEARCH COMPANY, SOLID CARBON PRODUCTS, LLC
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, Jr., Terry A. Ring
  • Patent number: 9504998
    Abstract: A system and methods for forming carbon allotropes are described. The system includes a reactor configured to use a catalyst to form a carbon allotrope from a feed stock in a Bosch reaction. The catalyst includes a roughened metal surface.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: November 29, 2016
    Assignees: EXXONMOBIL UPSTREAM RESEARCH COMPANY, SOLID CARBON PRODUCTS, LLC
    Inventors: Russell J. Koveal, Jr., Dallas B. Noyes, Terry A. Ring
  • Publication number: 20150246813
    Abstract: Systems and a method for forming carbon allotropes are described. An exemplary reactor system for the production of carbon allotropes includes a hybrid reactor configured to form carbon allotropes from a reactant gas mixture in a Bosch reaction. The hybrid reactor includes at least two distinct zones that perform different functions including reaction, attrition, catalyst separation, or gas separation.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 3, 2015
    Inventors: Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20150147261
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes treating a carbonaceous compound to form a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C. The carbon allotropes are separated from a reactor effluent stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: May 28, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20150114819
    Abstract: Methods and a system for removing carbon nanotubes from a water stream are provided herein. The system includes a purification vessel, wherein the purification vessel is configured to form a carbon oxide from the carbon nanotubes within the water stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: April 30, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, Jr., Terry A. Ring
  • Publication number: 20150093323
    Abstract: A system and methods for forming carbon allotropes are described. The system includes a reactor configured to use a catalyst to form a carbon allotrope from a feed stock in a Bosch reaction. The catalyst includes a roughened metal surface.
    Type: Application
    Filed: April 10, 2013
    Publication date: April 2, 2015
    Inventors: Russell J. Koveal, JR., Dallas B. Noyes, Terry A. Ring
  • Publication number: 20150071848
    Abstract: Methods and systems are provided for forming carbon allotropes. An exemplary method includes forming a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C., and the carbon allotropes are separated from a reactor effluent stream.
    Type: Application
    Filed: April 10, 2013
    Publication date: March 12, 2015
    Applicant: Solid Carbon Products LLC
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Publication number: 20150059571
    Abstract: Systems and a method for removing carbon nanotubes from a continuous reactor effluent are provided herein. The method includes flowing the continuous reactor effluent through a separation vessel, separating carbon nanotubes from the continuous reactor effluent in the separation vessel, and generating a stream including gaseous components from the continuous reactor effluent.
    Type: Application
    Filed: April 10, 2013
    Publication date: March 5, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Patent number: 6063349
    Abstract: The HCN concentration of HCN containing synthesis gas streams is reduced by treatment with a Group IVA metal oxide and optionally containing a Group IIB, Group VA, or Group VIA metal or metals, at reaction conditions preferably suppressing Fischer-Tropsch activity.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: May 16, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Russell J. Koveal, Jr., Keith E. Corkern