Patents by Inventor Russell J. Wakeman

Russell J. Wakeman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10260444
    Abstract: A direct injection fuel supply system, in one exemplary implementation, includes a lift fuel pump, a positive displacement pump, at least one fuel injector and an accumulator assembly. The lift pump is adapted to be in fluid communication with a supply of fuel and the positive displacement pump is in fluid communication with and downstream of the lift pump. The at least one injector is in fluid communication with an outlet of the positive displacement pump via a high pressure fuel line. The accumulator assembly includes an accumulator and a valve, where the valve is in direct fluid communication with the high pressure fuel line and the injector. The valve is selectively controlled to at least one of an open state providing fluid communication between the accumulator and the high pressure fuel line and a closed state blocking fluid communication between the accumulator and the high pressure fuel line.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 16, 2019
    Assignee: FCA US LLC
    Inventor: Russell J Wakeman
  • Patent number: 10247116
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor to an engine of the vehicle via a vapor line and a purge valve. The system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. A controller is configured to: detect an imminent cold start of the engine and, in response to the detecting, perform the cold start of the engine by controlling at least one of the purge pump and the purge valve, based on the measured amount of HC, to deliver a desired amount of fuel vapor to the engine, which decreases HC emissions by the engine.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: April 2, 2019
    Assignee: FCA US LLC
    Inventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
  • Patent number: 10041435
    Abstract: A direct injection (DI) fuel supply system includes an accumulator valve coupled to a high pressure fuel line at a position between an accumulator and a fuel rail. A controller of the DI fuel supply system is configured to control the accumulator valve to maintain the pressurized fuel housed in the fuel rail at a desired pressure and to control the accumulator valve proximate a fuel injection event by a fuel injector such that the accumulator supplies the fuel rail with approximately the portion of the pressurized fuel injected by the fuel injector during the fuel injection event. This positioning of the accumulator valve between the DI positive displacement fuel pump and the fuel rail together with active control thereof also insulates the fuel rail and the fuel injector from fuel pressure pulsations generated by the DI positive displacement fuel pump.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: August 7, 2018
    Assignee: FCA US LLC
    Inventor: Russell J Wakeman
  • Patent number: 9879623
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor trapped in a vapor canister to an engine of the vehicle via a vapor line when engine vacuum is less than an appropriate level for delivering fuel vapor to the engine, the fuel vapor resulting from evaporation of a liquid fuel stored in a fuel tank of the engine. The EVAP control system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. The EVAP control system also includes a controller configured to, based on the measured amount of MC, control at least one of the purge pump and a purge valve to deliver a desired amount of fuel vapor to the engine.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: January 30, 2018
    Assignee: FCA US LLC
    Inventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
  • Publication number: 20170342917
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor to an engine of the vehicle via a vapor line and a purge valve. The system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. A controller is configured to: detect an imminent cold start of the engine and, in response to the detecting, perform the cold start of the engine by controlling at least one of the purge pump and the purge valve, based on the measured amount of HC, to deliver a desired amount of fuel vapor to the engine, which decreases HC emissions by the engine.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Joseph Dekar, Roger C Sager, James J Daley, William B Blomquist, Jeffrey P Wuttke, Russell J Wakeman, Adam Fleischman, Ronald A Yannone, Jr., Luis Del Rio, Mark L Lott, Edward Baker, Michael T Vincent, Wei-Jun Yang, Aikaterini Tsahalou
  • Publication number: 20170342919
    Abstract: An evaporative emissions (EVAP) control system for a vehicle includes a purge pump configured to pump fuel vapor trapped in a vapor canister to an engine of the vehicle via a vapor line when engine vacuum is less than an appropriate level for delivering fuel vapor to the engine, the fuel vapor resulting from evaporation of a liquid fuel stored in a fuel tank of the engine. The EVAP control system includes a hydrocarbon (HC) sensor disposed in the vapor line and configured to measure an amount of HC in the fuel vapor pumped by the purge pump to the engine via the vapor line. The EVAP control system also includes a controller configured to, based on the measured amount of HC, control at least one of the purge pump and a purge valve to deliver a desired amount of fuel vapor to the engine.
    Type: Application
    Filed: May 25, 2016
    Publication date: November 30, 2017
    Inventors: Joseph Dekar, Roger C. Sager, James J. Daley, William B. Blomquist, Jeffrey P. Wuttke, Russell J. Wakeman, Adam Fleischman, Ronald A. Yannone, JR., Luis Del Rio, Mark L. Lott, Edward Baker, Michael T. Vincent, Wei-Jun Yang, Aikaterini Tsahalou
  • Patent number: 9470195
    Abstract: A fuel supply system with an accumulator that allows for the accumulation of fuel at a pressure greater than the nominal operating pressure of the fuel supply system. The accumulation of fuel allows for less frequent fuel pump operation and therefore a reduction in overall fuel consumption of an engine.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: October 18, 2016
    Assignee: FCA US LLC
    Inventors: Michael R Teets, Joseph B Adams, Thomas A Sharp, Regina M Cook, Paul J Fitzgerald, Russell J Wakeman, John R Jaye, Glen E Tallarek, Paul J Luft
  • Publication number: 20160169146
    Abstract: A direct injection (DI) fuel supply system includes an accumulator valve coupled to a high pressure fuel line at a position between an accumulator and a fuel rail. A controller of the DI fuel supply system is configured to control the accumulator valve to maintain the pressurized fuel housed in the fuel rail at a desired pressure and to control the accumulator valve proximate a fuel injection event by a fuel injector such that the accumulator supplies the fuel rail with approximately the portion of the pressurized fuel injected by the fuel injector during the fuel injection event. This positioning of the accumulator valve between the DI positive displacement fuel pump and the fuel rail together with active control thereof also insulates the fuel rail and the fuel injector from fuel pressure pulsations generated by the DI positive displacement fuel pump.
    Type: Application
    Filed: December 16, 2014
    Publication date: June 16, 2016
    Inventor: Russell J. Wakeman
  • Publication number: 20150369189
    Abstract: A fuel supply system with an accumulator that allows for the accumulation of fuel at a pressure greater than the nominal operating pressure of the fuel supply system. The accumulation of fuel allows for less frequent fuel pump operation and therefore a reduction in overall fuel consumption of an engine.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: Michael R. Teets, Joseph B. Adams, Thomas A. Sharp, Regina M. Cook, Paul J. Fitzgerald, Russell J. Wakeman, John R. Jaye, Glen E. Tallarek, Paul J. Luft
  • Publication number: 20150308368
    Abstract: An active fuel pressure pulsation cancellation technique includes receiving, at a controller of an engine having a camshaft-driven fuel pump, an unfiltered fuel pressure signal indicative of a measured pressure of fuel in a fuel rail. The technique includes detecting, at the controller, fuel pressure pulsations in the fuel rail based on the unfiltered fuel pressure signal. The technique includes generating, at the controller, a cancellation signal based on an opposite polarity of the fuel pressure pulsations. The technique also includes controlling, by the controller, an actuator associated with the fuel rail using the cancellation signal to cause the actuator to generate liquid-borne cancellation pulsations that cancel the fuel pressure pulsations in the fuel rail.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 29, 2015
    Inventors: Russell J. Wakeman, Adam Fleischman
  • Publication number: 20150176516
    Abstract: A direct injection fuel supply system, in one exemplary implementation, includes a lift fuel pump, a positive displacement pump, at least one fuel injector and an accumulator assembly. The lift pump is adapted to be in fluid communication with a supply of fuel and the positive displacement pump is in fluid communication with and downstream of the lift pump. The at least one injector is in fluid communication with an outlet of the positive displacement pump via a high pressure fuel line. The accumulator assembly includes an accumulator and a valve, where the valve is in direct fluid communication with the high pressure fuel line and the injector. The valve is selectively controlled to at least one of an open state providing fluid communication between the accumulator and the high pressure fuel line and a closed state blocking fluid communication between the accumulator and the high pressure fuel line.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 25, 2015
    Inventor: Russell J. Wakeman
  • Patent number: 9032805
    Abstract: A fluid-pressure indicator includes a housing having a first region and a second region. A pressure-responsive member is disposed in the first region and is movable between an expanded state and a compressed state. An indicator disk is viewable through the pressure-responsive member when the pressure-responsive member is in the compressed state and is obscured from view through the pressure-responsive member when the pressure-responsive member is in the expanded state. A diaphragm is movable from a relaxed state to a deflected state in response to pressure within the second region exceeding a threshold pressure and prevents fluid communication between the first region and the second region. The diaphragm additionally causes the pressure-responsive member to move from the expanded state to the compressed state when the pressure exceeds the threshold pressure.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 19, 2015
    Assignee: FCA US LLC
    Inventor: Russell J. Wakeman
  • Patent number: 8813605
    Abstract: An apparatus for damping vibrations in an internal combustion engine. The apparatus includes a pendulum-type torsional absorber that uses a hydraulic snubber mechanism to limit travel of the pendulum without causing noise or damage to the absorber, crankshaft or other engine components.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: August 26, 2014
    Assignee: Chrysler Group LLC
    Inventor: Russell J. Wakeman
  • Publication number: 20140165965
    Abstract: A fuel supply system with an accumulator that allows for the accumulation of fuel at a pressure greater than the nominal operating pressure of the fuel supply system. The accumulation of fuel allows for less frequent fuel pump operation and therefore a reduction in overall fuel consumption of an engine.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Inventors: Michael R. Teets, Joseph B. Adams, Thomas A. Sharp, Regina M. Cook, Paul J. Fitzgerald, Russell J. Wakeman, John R. Jaye, Glen E. Tallarek, Paul J. Luft
  • Publication number: 20140053680
    Abstract: An apparatus for damping vibrations in an internal combustion engine. The apparatus includes a pendulum-type torsional absorber that uses a hydraulic snubber mechanism to limit travel of the pendulum without causing noise or damage to the absorber, crankshaft or other engine components.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: CHRYSLER GROUP LLC
    Inventor: Russell J. Wakeman
  • Publication number: 20130305832
    Abstract: A fluid-pressure indicator is provided and may include a housing having a first region and a second region. A pressure-responsive member may be disposed in the first region and may be movable between an expanded state and a compressed state. An indicator disk may be viewable through the pressure-responsive member when the pressure-responsive member is in the compressed state and may be obscured from view through the pressure-responsive member when the pressure-responsive member is in the expanded state. A diaphragm may be movable from a relaxed state to a deflected state in response to pressure within the second region exceeding a threshold pressure and may prevent fluid communication between the first region and the second region. The diaphragm may additionally cause the pressure-responsive member to move from the expanded state to the compressed state when the pressure exceeds the threshold pressure.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Applicant: CHRYSLER GROUP LLC
    Inventor: Russell J. Wakeman
  • Patent number: 8272463
    Abstract: A combined hybrid drive system and electro-hydraulic machine includes a hybrid drive system that is adapted to decelerate a rotatably driven mechanism, accumulate the energy resulting from such deceleration, and use the accumulated energy to subsequently accelerate the rotatably driven mechanism. An electro-hydraulic machine is operatively connected to the hybrid drive system and is adapted to be operated in one or more of a plurality of modes to improve the performance of the hybrid drive system.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: September 25, 2012
    Assignee: Parker-Hannifin Corporation
    Inventors: Joseph A. Kovach, Russell J. Wakeman
  • Publication number: 20090270221
    Abstract: A combined hybrid drive system and electro-hydraulic machine includes a hybrid drive system that is adapted to decelerate a rotatably driven mechanism, accumulate the energy resulting from such deceleration, and use the accumulated energy to subsequently accelerate the rotatably driven mechanism. An electro-hydraulic machine is operatively connected to the hybrid drive system and is adapted to be operated in one or more of a plurality of modes to improve the performance of the hybrid drive system.
    Type: Application
    Filed: January 23, 2009
    Publication date: October 29, 2009
    Inventors: Joseph A. Kovach, Russell J. Wakeman
  • Patent number: 7421981
    Abstract: A switching mechanism capable of switching between a two-stroke operation and a four-stroke operation of an engine as desired, wherein the switching mechanism is switchable between engagement with a first cam lobe for four-stroke operation and a second cam lobe for two-stroke operation.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: September 9, 2008
    Assignee: Ricardo, Inc.
    Inventor: Russell J. Wakeman
  • Patent number: 7137381
    Abstract: A reciprocating piston-type internal combustion engine includes an engine cylinder, an intake port, an intake runner providing a passage through which intake gas enters the cylinder through the intake port, an intake valve for opening and closing the intake port, and a first flap located in the intake runner upstream from the intake valve, arranged in series with the intake valve, and having first and second positional states that vary during each engine cycle. The first state opens the intake runner passage to permit intake gas to enter the cylinder through the intake port. The second state at least partially closes the intake runner passage to control the flow of gas exiting or entering the cylinder through the intake port.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: November 21, 2006
    Assignee: Ricardo, Inc.
    Inventors: Russell J. Wakeman, Frédéric F. Jacquelin