Patents by Inventor Russell Joseph Dobbs

Russell Joseph Dobbs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7070106
    Abstract: An Internet-based remote monitoring, configuration and service (RMCS) system capable of monitoring, configuring and servicing a planar laser illumination and imaging (PLIIM) based network. The network has one or more nodes and performs object identification and attribute acquisition functions. Each node is a PLIIM-based subsystem operably connected to a digital communications network interconnectable to the infrastructure of the Internet. The Internet-based RMCS system comprises a monitoring subsystem for remotely monitoring a set parameters associated with the PLIIM-based network. The set of parameters relate to network, system and/or subsystem characteristics of the PLIIM-based network. The RMCS also includes an analyzing subsystem for remotely analyzing the parameters to diagnose (i) performance failures in the PLIIM-based network, as well as (ii) the operation and performance of the PLIIM-based network.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: July 4, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Mark C. Schmidt, Xiaoxun Zhu, Shawn Defoney, Edward Skypala, Constantine J. Tsikos, Ka Man Au, Barry E. Schwartz, Allan Wirth, Andrew Jankevics, Timothy A. Good, Sankar Ghosh, Michael D. Schnee, George Kolis, Thomas Amundsen, Charles A. Naylor, Robert Blake, Russell Joseph Dobbs, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., William Svedas, Steven Y. Kim, Dale M. Fischer, Jon Van Tassell
  • Patent number: 6988661
    Abstract: An automated object identification and attribute acquisition system comprising a planar light illumination and imaging subsystem (PLIIM) based linear imaging subsystem, and a laser-based object profiling subsystem integrated within a multi-compartment system housing. The system housing has a substantially unitary construction and includes a first optically-isolated compartment formed in its upper deck portion for containing the PLIIM based linear imaging subsystem and associated components therewithin. The system housing also includes a second optically-isolated compartment formed in its lower deck portion, disposed below the first optically-isolated compartment; for containing the laser-based object profiling subsystem and associated components therewithin.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: January 24, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Charles A. Naylor, Thomas Amundsen, Russell Joseph Dobbs
  • Patent number: 6978935
    Abstract: A planar laser illumination and imaging (PLIIM) based system comprising a linear image formation and detection module having (i) an image sensing chip having a plurality of conductive pins establishing electrical interconnections with conductive elements within a chip mounting socket mounted on an electronic camera board, and (ii) image forming optics with a field of view. The system also includes a heat-exchanging structure, rigidly connected to the image formation optics, and having (i) a body portion provided with heat exchanging elements, (ii) a plurality of apertures through which the plurality of conductive pins on the image sensing chip pass to establish electrical interconnections with the conductive elements within the chip mounting socket, and (III) a plurality of mechanical elements for releasably engaging the package of the image sensing chip so as to rigidly maintain the image sensing chip in alignment with the image forming optics.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: December 27, 2005
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark S. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 6978936
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: December 27, 2005
    Assignee: Metpologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 6896184
    Abstract: A planar laser illumination and imaging (PLIIM) based system having a linear image formation and detection module disposed in a system housing, and having image formation optics with a field of view projectable through an aperture in the housing and onto an object moving relative thereto during object illumination and imaging operations. A pair of planar laser illumination arrays (PLIAs) are disposed on the system housing. Each planar laser array (PLIA) includes a plurality of laser diodes arranged together in a linear manner. The planar laser illumination arrays are arranged in relation to the linear image formation and detection module, and produce a pair of planar laser illumination beams (PLIBs). The pair of stationary planar laser illumination beams are projected through light transmission apertures in the system housing and oriented such that the plane of the planar laser illumination beams is coplanar with the field of view of the linear image formation and detection module.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: May 24, 2005
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxum Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Patent number: 6837437
    Abstract: In a planar light illumination and imaging (PLIIM) system, a planar light illumination module (PLIM) of compact construction produces a planar laser illumination beam (PLIB) which emanates substantially within a single plane along the direction of beam propagation towards an object to be optically illuminated and imaged. The PLIM comprises a module housing which has an axial extent, first and second end portions, a central bore formed along the axial extent, and a recess integrally formed in the second end portion. A visible laser diode (VLD) is mounted along the bore at the first end portion of the module housing, for producing a laser beam generally along the axial extent. A focusing lens is mounted along the bore between the first and second end portions, for focusing the laser beam to a predetermined focal point.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: January 4, 2005
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Patent number: 6830189
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: December 14, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Allan Wirth, Andrew Jankevics, Steve Y. Kim, Timothy Good, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Xiaoxun Zhu, Michael D. Schnee, Carl Harry Knowles
  • Patent number: 6786414
    Abstract: A planar laser illumination and imaging system for illuminating an object and forming an image thereof. The planar laser illumination and imaging system which comprises an image formation and detection module having a field of view (FOV) focused at an image detecting array. A planar laser illumination array (PLIA) constructed from an plurality of planar laser illumination modules (PLIMs) is arranged in rectilinear manner.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: September 7, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Patent number: 6764008
    Abstract: In a planar light illumination and imaging (PLIIM) system, a planar light illumination module (PLIM) of compact construction produces a planar laser illumination beam (PLIB) which emanates substantially within a single plane along the direction of beam propagation towards an object to be optically illuminated and imaged. The PLIM comprises a module housing which has an axial extent, first and second end portions, a central bore formed along the axial extent, and a recess integrally formed in the second end portion. A visible laser diode (VLD) is mounted along the bore at the first end portion of the module housing, for producing a laser beam generally along the axial extent. A focusing lens is mounted along the bore between the first and second end portions, for focusing the laser beam to a predetermined focal point.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: July 20, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Patent number: 6742711
    Abstract: A method of extending the working distance of a planar laser illumination and imaging system without increasing the output power of the visible laser diode (VLD) sources employed therein. The method comprises the steps of: providing a planar laser illumination and imaging system having (1) a plurality of planar laser illumination modules (PLIMs) for producing a planar laser illumination beam, and (2) an image formation and detection (IFD) subsystem having a field of view along which the planar laser illumination beam extends, wherein each PLIM has a visible laser diode (VLD) source and beam focusing optics and beam planarizing optics, and the IFD subsystem has image formation optics for determining the maximum working distance of the system; adjusting the imaging optics of the IFD subsystem from an original working distance of the system to an extended working distance thereof; and adjusting the beam focusing optics so that the planar laser illumination beam is focused at the extended working distance.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: June 1, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Patent number: 6742707
    Abstract: A planar laser illumination and imaging (PLIIM) based camera system capable of producing digital images with reduced levels of speckle-pattern noise. The PLIIM based camera system comprises a planar laser illumination array (PLIA) including a plurality of laser diodes for producing and projecting a planar laser illumination beam (PLIB) through a light transmission aperture, so as to illuminate an object as it is moving past said PLIIM based camera system. An image formation and detection (IFD) module is provided having a image detection array and imaging forming optics for providing said image detection array with a field of view (FOV). The PLIB and FOV are arranged in a coplanar relationship along the working range of the PLIIM based camera system so that the PLIB illuminates primarily within the FOV of the IFD module.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: June 1, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Allan Wirth, Andrew Jankevics, Carl Harry Knowles
  • Publication number: 20040065736
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: February 1, 2002
    Publication date: April 8, 2004
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Publication number: 20030218070
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 27, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030209602
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: November 15, 2002
    Publication date: November 13, 2003
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Patent number: 6631842
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: October 14, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Carl Harry Knowles
  • Patent number: 6629641
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: October 7, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Michael D. Schnee, Xiaoxun Zhu, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Allan Wirth, Andrew Jankevics, Carl Harry Knowles
  • Publication number: 20030146282
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 7, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Allan Wirth, Timothy A. Good, Andrew Jankevics, Steve Y. Kim, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Patrick A. Giordano, Jeffery Yorsz, Mark S. Schmidt, Stephen J. Colavito, David M. Wilz, Ka Man Au, William Svedas, Sankar Ghosh, Michael D. Schnee, Xiaoxun Zhu, C. Harry Knowles
  • Publication number: 20030080192
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: June 6, 2002
    Publication date: May 1, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030080190
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: May 23, 2002
    Publication date: May 1, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030071124
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: April 30, 2002
    Publication date: April 17, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell