Patents by Inventor Russell Machado

Russell Machado has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10288668
    Abstract: An arc fault sensor disposed on a circuit board proximate to a current carrying trace. The arc fault sensor includes a magnetic flux concentrator (MFC). The MFC includes a first flange and a second flange that are joined by a center post. Each of the first and second flanges have a cross sectional area that is larger than the center post. A sense coil winding is wound around the center post. The arc fault sensor generates an output voltage that is proportional to a rate of change of current in the current carrying conductor. For a given diameter of the sense coil winding, the output voltage is enhanced by the ratio of the cross-sectional areas of the flanges relative to the cross-sectional area of the center post. Methods of manufacturing and utilizing the aforementioned arc fault sensor are also disclosed.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: May 14, 2019
    Assignee: Pulse Electronics, Inc.
    Inventors: Glenn Roemer, Fuxue Jin, Russell Machado, Bruce Hamilton
  • Publication number: 20160231375
    Abstract: An arc fault sensor disposed on a circuit board proximate to a current carrying trace. The arc fault sensor includes a magnetic flux concentrator (MFC). The MFC includes a first flange and a second flange that are joined by a center post. Each of the first and second flanges have a cross sectional area that is larger than the center post. A sense coil winding is wound around the center post. The arc fault sensor generates an output voltage that is proportional to a rate of change of current in the current carrying conductor. For a given diameter of the sense coil winding, the output voltage is enhanced by the ratio of the cross-sectional areas of the flanges relative to the cross-sectional area of the center post. Methods of manufacturing and utilizing the aforementioned arc fault sensor are also disclosed.
    Type: Application
    Filed: February 10, 2016
    Publication date: August 11, 2016
    Inventors: GLENN ROEMER, FUXUE JIN, RUSSELL MACHADO, BRUCE HAMILTON
  • Publication number: 20070259573
    Abstract: An advanced modular plug connector assembly incorporating an insert assembly disposed in the rear portion of the connector housing. In one embodiment, the connector has a plurality of ports in multi-row configuration, and the insert assembly includes a substrate adapted to receive one or more electronic components such as choke coils, transformers, or other signal conditioning elements or magnetics. The substrate also interfaces with the conductors of two modular ports of the connector, and is removable from the housing such that an insert assembly of a different electronics or terminal configuration can be substituted therefor. In this fashion, the connector can be configured to a plurality of different standards (e.g., Gigabit Ethernet and 10/100). In yet another embodiment, the connector assembly comprises a plurality of light sources (e.g., LEDs) received within the housing. Methods for manufacturing the aforementioned embodiments are also disclosed.
    Type: Application
    Filed: July 9, 2007
    Publication date: November 8, 2007
    Inventors: Russell Machado, Victor Renteria, Thuyen Dinh
  • Publication number: 20070238359
    Abstract: A device for electrically interconnecting and packaging electronic components. In one embodiment, a modular non-conducting base member having one or more component recesses and a plurality of lead channels formed therein is provided. At least one electronic component is disposed within the recess, and the wire leads of the component routed through the lead channels to a conductive lead terminal. A plurality of lead terminals, adapted to cooperate with the non-conducting base member, are received therein, and adapted to place the device in signal communication with an external printed circuit board. The modular non-conducting base members are assembled or stacked to form a unitary modular assembly. Methods for fabricating the device are also disclosed.
    Type: Application
    Filed: April 5, 2006
    Publication date: October 11, 2007
    Inventors: Aurelio Gutierrez, Russell Machado, Chris Schaffer, Victor Renteria
  • Publication number: 20070015416
    Abstract: An advanced connector assembly enabled to receive and distribute power signals. In one embodiment, the connector comprises a single port modular jack, and incorporates an insert assembly disposed in the rear portion of the connector housing. The insert assembly includes first and second substrates and a cavity adapted to receive one or more electronic or signal conditioning components. Heat removal features are also utilized within the jack to effectively dissipate heat produced by the electronic or signal conditioning components. The insert assembly is also optionally made removable from the jack housing such that an insert assembly of a different electronics or terminal configuration can be substituted therefor. In this fashion, the connector can be configured to a plurality of different standards (e.g., Gigabit Ethernet, 10/100, etc.). Methods for manufacturing the aforementioned embodiments are also disclosed.
    Type: Application
    Filed: March 22, 2006
    Publication date: January 18, 2007
    Inventors: Aurelio Gutierrez, Victor Renteria, Russell Machado, Chris Schaffer, Henry Hinrichs
  • Publication number: 20060009061
    Abstract: An advanced modular plug connector assembly incorporating an insert assembly disposed in the rear portion of the connector housing. In one embodiment, the connector has a plurality of ports in multi-row configuration, and the insert assembly includes a substrate adapted to receive one or more electronic components such as choke coils, transformers, or other signal conditioning elements or magnetics. The substrate also interfaces with the conductors of two modular ports of the connector, and is removable from the housing such that an insert assembly of a different electronics or terminal configuration can be substituted therefor. In this fashion, the connector can be configured to a plurality of different standards (e.g., Gigabit Ethernet and 10/100). In yet another embodiment, the connector assembly comprises a plurality of light sources (e.g., LEDs) received within the housing. Methods for manufacturing the aforementioned embodiments are also disclosed.
    Type: Application
    Filed: June 28, 2005
    Publication date: January 12, 2006
    Inventors: Russell Machado, Victor Renteria, Thuyen Dinh