Patents by Inventor Russell Nelson
Russell Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230288082Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: ApplicationFiled: February 8, 2023Publication date: September 14, 2023Inventors: James M. Lundgreen, Robert Russell Nelson
-
Publication number: 20210348779Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: ApplicationFiled: May 12, 2021Publication date: November 11, 2021Inventors: James M. Lundgreen, Robert Russell Nelson
-
Publication number: 20200386426Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: ApplicationFiled: April 24, 2020Publication date: December 10, 2020Inventors: James M. Lundgreen, Robert Russell Nelson
-
Patent number: 10634373Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: GrantFiled: December 11, 2017Date of Patent: April 28, 2020Assignee: DRI-STEEM CorporationInventors: James M. Lundgreen, Robert Russell Nelson
-
Patent number: 10106916Abstract: A fluoropolymer fiber exhibiting improved wear properties prepared from a blend of fluoropolymer particles and aluminum oxide particles. The concentration of aluminum oxide particles in the blend ranges from between about 0.1% to about 5%, with a specific concentration of 0.1% to 1.0%. The fluoropolymer fibers may be dispersion spun, melt spun or paste extruded.Type: GrantFiled: December 22, 2015Date of Patent: October 23, 2018Assignee: TORAY FLUOROFIBERS (AMERICA), INC.Inventors: Chester Darryl Moon, Arthur Russell Nelson, Trevor Guldstrand, Matt Hutto
-
Patent number: 10072831Abstract: A combination transformer junction box for use with pool and/or spa lighting and/or other low-voltage devices, which combination transformer junction box includes a waterproof housing having a base and a cover, a first set of terminals for low voltage, a second set of terminals for high voltage separated from the first set of terminals by a barrier, and a transformer disposed upon the base such that the transformer is within the base and does not occupy a volume defined by the cover. In one aspect a plurality of the combination transformer junction boxes may be provided together in a daisy-chain linked form configured for controlling a plurality or larger plurality of lighting and/or other low-voltage devices.Type: GrantFiled: September 27, 2017Date of Patent: September 11, 2018Assignee: Intermatic IncorporatedInventors: Andrew Greaney, Kyle Quirk, Donald Gallagher, Russell Nelson
-
Publication number: 20180202673Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: ApplicationFiled: December 11, 2017Publication date: July 19, 2018Inventors: James M. Lundgreen, Robert Russell Nelson
-
Publication number: 20180094800Abstract: A combination transformer junction box for use with pool and/or spa lighting and/or other low-voltage devices, which combination transformer junction box includes a waterproof housing having a base and a cover, a first set of terminals for low voltage, a second set of terminals for high voltage separated from the first set of terminals by a barrier, and a transformer disposed upon the base such that the transformer is within the base and does not occupy a volume defined by the cover. In one aspect a plurality of the combination transformer junction boxes may be provided together in a daisy-chain linked form configured for controlling a plurality or larger plurality of lighting and/or other low-voltage devices.Type: ApplicationFiled: September 27, 2017Publication date: April 5, 2018Applicant: Intermatic IncorporatedInventors: Andrew Greaney, Kyle Quirk, Donald Gallagher, Russell Nelson
-
Publication number: 20170364381Abstract: Example implementations relate to data center configuration. For example, a server system is configured in a data center by a configuration system including an input processor that receives a data file having multiple record types including a range record type. An error checking processor verifies that the data file has correct syntax and that each of the multiple record types is a valid record type with required attributes. If no error is detected, a record processor converts each of the record types in the data file into a set of ReST API and an output processor sends the set of ReST API requests to a data center configuration manager.Type: ApplicationFiled: January 13, 2015Publication date: December 21, 2017Applicant: Hewlett Packard Enterprise Development LPInventors: Bobby Brad Suber, Russell Nelson Briggs
-
Patent number: 9841200Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: GrantFiled: November 23, 2015Date of Patent: December 12, 2017Assignee: DRI-STEEM CORPORATIONInventors: James M. Lundgreen, Robert Russell Nelson
-
Publication number: 20160326336Abstract: A dispersion spun fluoropolymer fiber prepared from non-melt-processible polytetrafluoroethylene particles and aluminum oxide particles. The concentration of Al2O3 in the aqueous dispersion may range from between about 0.1% to about 5%, with specific concentration of 0.1%, 1.0. The aqueous dispersion is mixed with an aqueous matrix polymer solution containing a matrix polymer and then extruded into a coagulation bath containing a concentration of ions which coagulate the matrix polymer to form an intermediate fiber structure which carries ionic species. The intermediate fiber structure is sintered to decompose the matrix polymer and coalesce the polytetrafluoroethylene particles and the Al2O3 particles into a blended fiber. The resulting, blended fluoropolymer fiber exhibits improved properties relative to 100% dispersion spun polytetrafluoroethylene fibers.Type: ApplicationFiled: July 24, 2016Publication date: November 10, 2016Inventors: Chester Darryl Moon, Arthur Russell Nelson, Trevor Guldstrand, Matt Hutto
-
Patent number: 9422642Abstract: A dispersion spun fluoropolymer fiber prepared from non-melt-processible polytetrafluoroethylene particles and aluminum oxide particles. The concentration of Al2O3 in the aqueous dispersion may range from between about 0.1% to about 5%, with specific concentration of 0.1%, 1.0. The aqueous dispersion is mixed with an aqueous matrix polymer solution containing a matrix polymer and then extruded into a coagulation bath containing a concentration of ions which coagulate the matrix polymer to form an intermediate fiber structure which carries ionic species. The intermediate fiber structure is sintered to decompose the matrix polymer and coalesce the polytetrafluoroethylene particles and the Al2O3 particles into a blended fiber. The resulting, blended fluoropolymer fiber exhibits improved properties relative to 100% dispersion spun polytetrafluoroethylene fibers.Type: GrantFiled: July 29, 2013Date of Patent: August 23, 2016Assignee: Toray Fluorofibers (America), Inc.Inventors: Chester Darryl Moon, Arthur Russell Nelson, Trevor Guldstrand, Matt Hutto
-
Publication number: 20160187017Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: ApplicationFiled: November 23, 2015Publication date: June 30, 2016Inventors: James M. Lundgreen, Robert Russell Nelson
-
Publication number: 20160108557Abstract: A fluoropolymer fiber exhibiting improved wear properties prepared from a blend of fluoropolymer particles and aluminum oxide particles. The concentration of aluminum oxide particles in the blend ranges from between about 0.1% to about 5%, with a specific concentration of 0.1% to 1.0%. The fluoropolymer fibers may be dispersion spun, melt spun or paste extruded.Type: ApplicationFiled: December 22, 2015Publication date: April 21, 2016Inventors: Chester Darryl Moon, Arthur Russell Nelson, Trevor Guldstrand, Matt Hutto
-
Patent number: 9194595Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: GrantFiled: December 10, 2013Date of Patent: November 24, 2015Assignee: DRI-STEEM CorporationInventors: James M. Lundgreen, Robert Russell Nelson
-
Publication number: 20150151521Abstract: A flexible non-porous laminate film structure is provided comprising a textile substrate having a fluorinated film laminated thereto, which is laminated at a temperature lower than the softening point of the predominant polymeric component of the fluoropolymer fiber. The resulting product is resistant to delamination.Type: ApplicationFiled: February 4, 2015Publication date: June 4, 2015Inventors: Peter B. Thornton, Arthur Russell Nelson
-
Publication number: 20150144261Abstract: A method of manufacturing a flexible non-porous laminate film structure is provided comprising a textile substrate having a fluorinated film laminated thereto, which is laminated at a temperature lower than the softening point of the predominant polymeric component of the fluoropolymer fiber. The resulting product is resistant to delamination.Type: ApplicationFiled: February 4, 2015Publication date: May 28, 2015Inventors: Peter B. Thornton, Arthur Russell Nelson
-
Patent number: 8975197Abstract: A flexible non-porous laminate film structure is provided comprising a textile substrate having a fluorinated film laminated thereto, which is laminated at a temperature lower than the softening point of the predominant polymeric component of the fluoropolymer fiber. The resulting product is resistant to delamination.Type: GrantFiled: April 19, 2013Date of Patent: March 10, 2015Assignee: Stern & Stern Industries, Inc.Inventors: Peter B. Thornton, Arthur Russell Nelson
-
Publication number: 20150031801Abstract: A dispersion spun fluoropolymer fiber prepared from non-melt-processible polytetrafluoroethylene particles and aluminum oxide particles. The concentration of Al2O3 in the aqueous dispersion may range from between about 0.1% to about 5%, with specific concentration of 0.1%, 1.0. The aqueous dispersion is mixed with an aqueous matrix polymer solution containing a matrix polymer and then extruded into a coagulation bath containing a concentration of ions which coagulate the matrix polymer to form an intermediate fiber structure which carries ionic species. The intermediate fiber structure is sintered to decompose the matrix polymer and coalesce the polytetrafluoroethylene particles and the Al2O3 particles into a blended fiber. The resulting, blended fluoropolymer fiber exhibits improved properties relative to 100% dispersion spun polytetrafluoroethylene fibers.Type: ApplicationFiled: July 29, 2013Publication date: January 29, 2015Applicant: Toray Fluorofibers (America), Inc.Inventors: Chester Darryl Moon, Arthur Russell Nelson, Trevor Guldstrand, Matt Hutto
-
Publication number: 20140246795Abstract: A steam dispersion apparatus includes a steam chamber communicating in an open-loop arrangement with a first steam source for supplying steam to the steam chamber. The steam chamber includes a steam dispersion location at which steam exits therefrom at generally atmospheric pressure. A heat exchanger communicates in a closed-loop arrangement with a second steam source for supplying steam to the heat exchanger at a pressure generally higher than atmospheric pressure. The heat exchanger is located at a location that is not directly exposed to the air to be humidified, the heat exchanger being in fluid communication with the steam chamber so as to contact condensate from the steam chamber. The heat exchanger converts condensate formed by the steam chamber back to steam when the condensate contacts the heat exchanger.Type: ApplicationFiled: December 10, 2013Publication date: September 4, 2014Applicant: DRI-STEEM CorporationInventors: James M. Lundgreen, Robert Russell Nelson