Patents by Inventor Russell Toris

Russell Toris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835960
    Abstract: A system includes: a mobile robot comprising a sensor, the robot further comprising a computer, the robot operating in an environment; a server operably connected to the robot via a communication system, the server configured to manage the robot; a controller operably connected to the robot, the controller operably connected to the server, the controller configured to control the robot; and an object of interest marked with a marker at one or more of an approximate height and an approximate field of view of the sensor, the sensor generating data describing the object of interest, the computer configured to identify one or more of the object of interest and the location using one or more of a shape of the object of interest and an intensity of data describing the object of interest.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: December 5, 2023
    Assignee: Zebra Technologies Corporation
    Inventors: Brian Cairl, Derek King, Sarah Elliott, Alex Henning, Melonee Wise, Russell Toris
  • Patent number: 11809173
    Abstract: A system includes: a cart including: four legs; at least one shelf, each shelf attached to each of the legs; the cart having a generally rectangular shape, a width of the cart being longer than a length of the robot, a length of the cart being longer than a length of the robot; four wheels, each wheel attached to a different leg at a bottom of the leg, the wheels configured to roll to facilitate movement of the cart; and a robotic dock, the robotic dock comprising four docking receptacles at ninety degree angles from adjacent docking receptacles; and a robot comprising: a sensor; and a docking module, the docking module comprising retractable docking pins, each retractable docking pin configured, when extended upward, to mate with a corresponding docking receptacle, thereby securing the robot to a bottom shelf of the cart.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: November 7, 2023
    Assignee: Zebra Technologies Corporation
    Inventors: Eric Diehr, Brian Cairl, Sarah Elliott, Levon Avagyan, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Patent number: 11787059
    Abstract: A method for selecting a preferred robotic grasp of an object-of-interest using pairwise ranking includes: identifying a robotic candidate grasp usable to grasp the object-of-interest, the object-of-interest situated in an environment; receiving a grasp preference for a preferred candidate grasp of the object-of-interest; calculating a heuristic to describe a relationship of the candidate grasp to one or more of the object-of-interest and the environment; and using the heuristic and using the grasp preference, computing a pairwise ranking of two candidate grasps to determine an ordering of the at least two candidate grasps.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: October 17, 2023
    Assignee: Zebra Technologies Corporation
    Inventors: Russell Toris, Sarah Elliott, David Kent
  • Patent number: 11427404
    Abstract: A cart-based workflow system includes: a robot operating in a facility; a server, the server operably connected to the robot, the server configured to do one or more of send the robot a cart transfer location usable for transferring the cart and instruct the robot to specify the cart transfer location; a graphic user interface (GUI) comprising a map of the facility, the GUI operably connected to the server, the GUI configured to do one or more of receive input from a human user and provide output to the human user, the GUI further configured to be usable by the user to coordinate movement of one or more of robots and carts.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: August 30, 2022
    Assignee: Fetch Robotics, Inc.
    Inventors: Brian Cairl, Eric Diehr, Levon Avagyan, Sarah Elliott, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Publication number: 20210284446
    Abstract: A cart-based workflow system includes: a robot operating in a facility; a server, the server operably connected to the robot, the server configured to do one or more of send the robot a cart transfer location usable for transferring the cart and instruct the robot to specify the cart transfer location; a graphic user interface (GUI) comprising a map of the facility, the GUI operably connected to the server, the GUI configured to do one or more of receive input from a human user and provide output to the human user, the GUI further configured to be usable by the user to coordinate movement of one or more of robots and carts.
    Type: Application
    Filed: April 10, 2019
    Publication date: September 16, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Brian Cairl, Eric Diehr, Levon Avagyan, Sarah Elliott, Rohan Bhargava, Russell Toris, John W. Stewart, Derek King, Melonee Wise, Niharika Arora
  • Publication number: 20210191376
    Abstract: A system includes: a cart including: four legs; at least one shelf, each shelf attached to each of the legs; the cart having a generally rectangular shape, a width of the cart being longer than a length of the robot, a length of the cart being longer than a length of the robot; four wheels, each wheel attached to a different leg at a bottom of the leg, the wheels configured to roll to facilitate movement of the cart; and a robotic dock, the robotic dock comprising four docking receptacles at ninety degree angles from adjacent docking receptacles; and a robot comprising: a sensor; and a docking module, the docking module comprising retractable docking pins, each retractable docking pin configured, when extended upward, to mate with a corresponding docking receptacle, thereby securing the robot to a bottom shelf of the cart.
    Type: Application
    Filed: December 11, 2020
    Publication date: June 24, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Eric Diehr, Brian Cairl, Sarah Elliott, Levon Avagyan, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Publication number: 20210086362
    Abstract: A method for selecting a preferred robotic grasp of an object-of-interest using pairwise ranking includes: identifying a robotic candidate grasp usable to grasp the object-of-interest, the object-of-interest situated in an environment; receiving a grasp preference for a preferred candidate grasp of the object-of-interest; calculating a heuristic to describe a relationship of the candidate grasp to one or more of the object-of-interest and the environment; and using the heuristic and using the grasp preference, computing a pairwise ranking of two candidate grasps to determine an ordering of the at least two candidate grasps.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Russell Toris, Sarah Elliott, David Kent
  • Patent number: 10908601
    Abstract: A system includes: a cart including: four legs; at least one shelf, each shelf attached to each of the legs; the cart having a generally rectangular shape, a width of the cart being longer than a length of the robot, a length of the cart being longer than a length of the robot; four wheels, each wheel attached to a different leg at a bottom of the leg, the wheels configured to roll to facilitate movement of the cart; and a robotic dock, the robotic dock comprising four docking receptacles at ninety degree angles from adjacent docking receptacles; and a robot comprising: a sensor; and a docking module, the docking module comprising retractable docking pins, each retractable docking pin configured, when extended upward, to mate with a corresponding docking receptacle, thereby securing the robot to a bottom shelf of the cart.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 2, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Eric Diehr, Brian Cairl, Sarah Elliott, Levon Avagyan, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Patent number: 10899011
    Abstract: A method for selecting a preferred robotic grasp of an object-of-interest using pairwise ranking includes: identifying a robotic candidate grasp usable to grasp the object-of-interest, the object-of-interest situated in an environment; receiving a grasp preference for a preferred candidate grasp of the object-of-interest; calculating a heuristic to describe a relationship of the candidate grasp to one or more of the object-of-interest and the environment; and using the heuristic and using the grasp preference, computing a pairwise ranking of two candidate grasps to determine an ordering of the at least two candidate grasps.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: January 26, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Russell Toris, Sarah Elliott, David Kent
  • Publication number: 20210018912
    Abstract: A robot management system includes: a server; a plurality of robots operably connected to the server over a network, at least one robot including a sensor; and a graphic user interface (GUI) operably connected to the server, the GUI configured to display a map of a facility comprising the plurality of robots, the map configured to receive from a user the user's instructions to manage the robot.
    Type: Application
    Filed: April 10, 2019
    Publication date: January 21, 2021
    Applicant: FETCH ROBOTICS, INC.
    Inventors: David Tanner Dymesich, Melonee Wise, Nadir Muzaffar, Jenna Guergah, Russell Toris, Michael Ferguson, Rodion W. Romantsov, Michael Hwang, Jiahao Feng, Justin Chen, Sarah Eliott, Derek King, John W. Stewart
  • Publication number: 20200324976
    Abstract: A system includes: a cart including: four legs; at least one shelf, each shelf attached to each of the legs; the cart having a generally rectangular shape, a width of the cart being longer than a length of the robot, a length of the cart being longer than a length of the robot; four wheels, each wheel attached to a different leg at a bottom of the leg, the wheels configured to roll to facilitate movement of the cart; and a robotic dock, the robotic dock comprising four docking receptacles at ninety degree angles from adjacent docking receptacles; and a robot comprising: a sensor; and a docking module, the docking module comprising retractable docking pins, each retractable docking pin configured, when extended upward, to mate with a corresponding docking receptacle, thereby securing the robot to a bottom shelf of the cart.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Inventors: Eric Diehr, Brian Cairl, Sarah Elliott, Levon Avagyan, Rohan Bhargava, Russell Toris, John W. Stewart, III, Derek King, Melonee Wise, Niharika Arora
  • Publication number: 20200241551
    Abstract: A system for semantically identifying one or more of an object of interest and a location of a mobile robot in an environment of the robot includes: a mobile robot comprising a sensor, the robot further comprising a computer, the robot operating in an environment; a server operably connected to the robot via a communication system, the server configured to manage the robot; a controller operably connected to the robot, the controller operably connected to the server, the controller configured to control the robot; and an object of interest marked with a marker at one or more of an approximate height and an approximate field of view of the sensor, the sensor generating data describing the object of interest, the computer configured to identify one or more of the object of interest and the location using one or more of a shape of the object of interest and an intensity of data describing the object of interest.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 30, 2020
    Inventors: Brian Cairl, Derek King, Sarah Elliott, Alex Henning, Melonee Wise, Russell Toris
  • Publication number: 20200147798
    Abstract: A method for selecting a preferred robotic grasp of an object-of-interest using pairwise ranking includes: identifying a robotic candidate grasp usable to grasp the object-of-interest, the object-of-interest situated in an environment; receiving a grasp preference for a preferred candidate grasp of the object-of-interest; calculating a heuristic to describe a relationship of the candidate grasp to one or more of the object-of-interest and the environment; and using the heuristic and using the grasp preference, computing a pairwise ranking of two candidate grasps to determine an ordering of the at least two candidate grasps.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 14, 2020
    Inventors: Russell Toris, Sarah Elliott, David Kent