Patents by Inventor Rutger Meijer Timmerman Thijssen

Rutger Meijer Timmerman Thijssen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940416
    Abstract: The present invention relates to a heterodyne scanning probe microscopy method for imaging structures on or below the surface of a sample, the method including applying, using a transducer, an acoustic input signal to the sample sensing, using a probe including a probe tip in contact with the surface, an acoustic output signal, wherein the acoustic output signal is representative of acoustic surface waves induced by the acoustic input signal wherein the acoustic input signal comprises at least a first signal component having a frequency above 1 gigahertz, and wherein for detecting of the acoustic output signal the method comprises a step of applying a further acoustic input signal to at least one of the probe or the sample for obtaining a mixed acoustic signal, the further acoustic input signal including at least a second signal component having a frequency above 1 gigahertz, wherein the mixed acoustic signal comprises a third signal component having a frequency equal to a difference between the first frequen
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: March 26, 2024
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Paul Louis Maria Joseph van Neer, Rutger Meijer Timmerman Thijssen
  • Patent number: 11402405
    Abstract: A method and system for performing subsurface atomic force microscopy measurements, the system comprising: a signal source for generating an drive signal; a transducer configured to receive the drive signal for converting the drive signal into vibrational waves and coupling said vibrational waves into a stack comprising a sample for interaction with subsurface features within said sample; cantilever tip for contacting the sample for measuring surface displacement resulting from the vibrational waves to determine subsurface features; wherein the system includes a measurement device for measuring a measurement signal returning from the transducer during and/or in between the subsurface atomic force microscopy measurements.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 2, 2022
    Assignee: Nederlandse Oganisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Paul Louis Maria Joseph Van Neer, Maarten Hubertus Van Es, Hamed Sadeghian Marnani, Rutger Meijer Timmerman Thijssen, Martinus Cornelius Johannes Maria Van Riel
  • Publication number: 20210389345
    Abstract: A method and system for performing subsurface atomic force microscopy measurements, the system comprising: a signal source for generating an drive signal; a transducer configured to receive the drive signal for converting the drive signal into vibrational waves and coupling said vibrational waves into a stack comprising a sample for interaction with subsurface features within said sample; cantilever tip for contacting the sample for measuring surface displacement resulting from the vibrational waves to determine subsurface features; wherein the system includes a measurement device for measuring a measurement signal returning from the transducer during and/or in between the subsurface atomic force microscopy measurements.
    Type: Application
    Filed: October 24, 2019
    Publication date: December 16, 2021
    Inventors: Paul Louis Maria Joseph VAN NEER, Maarten Hubertus VAN ES, Hamed SADEGHIAN MARNANI, Rutger MEIJER TIMMERMAN THIJSSEN, Martinus Cornelius Johannes Maria VAN RIEL
  • Patent number: 10775405
    Abstract: The present document relates to a method of performing defect detection on a self-assembled monolayer of a semiconductor element or semi-manufactured semiconductor element, using an atomic force microscopy system. The system comprises a probe with a probe tip, and is configured for positioning the probe tip relative to the element for enabling contact between the probe tip and a surface of the element. The system comprises a sensor providing an output signal indicative of a position of the probe tip. The method comprises: scanning the surface with the probe tip; applying an acoustic vibration signal to the element; obtaining the output signal indicative of the position of the probe tip; monitoring probe tip motion during said scanning for mapping the surface of the semiconductor element, and using a fraction of the output signal for mapping contact stiffness indicative of a binding strength.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: September 15, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Rutger Meijer Timmerman Thijssen
  • Patent number: 10746702
    Abstract: Method of tuning parameter settings for performing acoustic scanning probe microscopy for subsurface imaging, scanning probe microscopy system, and computer program product. This document relates to a method of tuning a scanning probe microscopy system. The method comprises: a) applying an acoustic vibration signal comprising a first frequency and a second frequency to a sample; b) at a first position of the probe tip, sweeping the first frequency across a first frequency range, and obtaining a first signal; c) at a second position of the probe tip, sweeping the first frequency across at least said first frequency range, and obtaining a second signal; d) analyzing the first and second signals to obtain a difference characteristic dependent on the first frequency. The first and second position are selected such that a subsurface structure of the sample at the first and second position is different.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: August 18, 2020
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Rutger Meijer Timmerman Thijssen, Maarten Hubertus van Es
  • Publication number: 20190227097
    Abstract: The present document relates to a method of performing defect detection on a self-assembled monolayer of a semiconductor element or semi-manufactured semiconductor element, using an atomic force microscopy system. The system comprises a probe with a probe tip, and is configured for positioning the probe tip relative to the element for enabling contact between the probe tip and a surface of the element. The system comprises a sensor providing an output signal indicative of a position of the probe tip. The method comprises: scanning the surface with the probe tip; applying an acoustic vibration signal to the element; obtaining the output signal indicative of the position of the probe tip; monitoring probe tip motion during said scanning for mapping the surface of the semiconductor element, and using a fraction of the output signal for mapping contact stiffness indicative of a binding strength.
    Type: Application
    Filed: August 31, 2017
    Publication date: July 25, 2019
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Rutger Meijer Timmerman Thijssen
  • Publication number: 20190204276
    Abstract: The present invention relates to a heterodyne scanning probe microscopy method for imaging structures on or below the surface of a sample, the method including applying, using a transducer, an acoustic input signal to the sample sensing, using a probe including a probe tip in contact with the surface, an acoustic output signal, wherein the acoustic output signal is representative of acoustic surface waves induced by the acoustic input signal wherein the acoustic input signal comprises at least a first signal component having a frequency above 1 gigahertz, and wherein for detecting of the acoustic output signal the method comprises a step of applying a further acoustic input signal to at least one of the probe or the sample for obtaining a mixed acoustic signal, the further acoustic input signal including at least a second signal component having a frequency above 1 gigahertz, wherein the mixed acoustic signal comprises a third signal component having a frequency equal to a difference between the first frequen
    Type: Application
    Filed: April 13, 2017
    Publication date: July 4, 2019
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Paul Louis Maria Joseph van Neer, Rutger Meijer Timmerman Thijssen
  • Publication number: 20190154636
    Abstract: Method of tuning parameter settings for performing acoustic scanning probe microscopy for subsurface imaging, scanning probe microscopy system, and computer program product. This document relates to a method of tuning a scanning probe microscopy system. The method comprises: a) applying an acoustic vibration signal comprising a first frequency and a second frequency to a sample; b) at a first position of the probe tip, sweeping the first frequency across a first frequency range, and obtaining a first signal; c) at a second position of the probe tip, sweeping the first frequency across at least said first frequency range, and obtaining a second signal; d) analyzing the first and second signals to obtain a difference characteristic dependent on the first frequency. The first and second position are selected such that a subsurface structure of the sample at the first and second position is different.
    Type: Application
    Filed: April 13, 2017
    Publication date: May 23, 2019
    Inventors: Hamed Sadeghian Marnani, Rutger Meijer Timmerman Thijssen, Maarten Hubetus van Es