Patents by Inventor Ruvo Menotti

Ruvo Menotti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130183310
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis and, in particular, to a stress-induced phenotype in a transgenic mouse (PIGF?/?) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response. PIGF deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumor formation, pulmonary hypertension, vascular leakage (edema formation) and inflammatory disorders. The invention thus relates to molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monocloncal antibodies and tetrameric peptides, and to the use of these molecules to treat the above-mentioned pathological processes.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 18, 2013
    Inventors: Peter Carmeliet, Desire Collen, Sandro De Falco, Ruvo Menotti
  • Publication number: 20130177565
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis and, in particular, to a stress-induced phenotype in a transgenic mouse (PIGF?/?) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response. PIGF deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumor formation, pulmonary hypertension, vascular leakage (edema formation) and inflammatory disorders. The invention thus relates to molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monocloncal antibodies and tetrameric peptides, and to the use of these molecules to treat the above-mentioned pathological processes.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 11, 2013
    Applicants: LIFE SCIENCES RESEARCH PARTNERS VZW (LSRP), VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW (VIB)
    Inventors: Peter CARMELIET, Desire Collen, Sandro De Falco, Ruvo Menotti
  • Publication number: 20130177564
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis and, in particular, to a stress-induced phenotype in a transgenic mouse (PIGF?/?) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response. PIGF deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumor formation, pulmonary hypertension, vascular leakage (edema formation) and inflammatory disorders. The invention thus relates to molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monocloncal antibodies and tetrameric peptides, and to the use of these molecules to treat the above-mentioned pathological processes.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 11, 2013
    Inventors: Peter CARMELIET, Desire Collen, Sandro De Falco, Ruvo Menotti
  • Publication number: 20120263710
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis and, in particular, to a stress-induced phenotype in a transgenic mouse (PIGF?/?) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response. PIGF deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumor formation, pulmonary hypertension, vascular leakage (edema formation) and inflammatory disorders. The invention thus relates to molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monocloncal antibodies and tetrameric peptides, and to the use of these molecules to treat the above-mentioned pathological processes.
    Type: Application
    Filed: May 14, 2012
    Publication date: October 18, 2012
    Applicants: LIFE SCIENCES RESEARCH PARTNERS VZW (LSRP), VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW (VIB)
    Inventors: Peter CARMELIET, Désiré Collen, Sandro De Falco, Ruvo Menotti
  • Publication number: 20110275569
    Abstract: A protein inhibitor from Sulfolobulus Solfataricus and peptides thereof, which both have the ability to inhibit AARE and elastase. Similarly to the eukaryotic counterparts, the recombinant protein is able to inhibit in vitro the bovine alfa-chymotrypsin with a high specificity, and the porcine elastase but not all commercial available trypsins, features which distinguish all the members belonging to the family PEBP. Through site-specific mutagenesis techniques of the gene codifying SsCEI, it has been recognized the “reactive site loop”—RCL—on the inhibitor, responsible for the interaction with the eukarial protease target already identified. The inhibitor and the peptides thereof can be used as new compounds capable of modulating cognitive enhancement cardiovascular diseases, cancer, inflammation, hematological diseases, neurological diseases and urological diseases.
    Type: Application
    Filed: April 25, 2011
    Publication date: November 10, 2011
    Applicant: CONSIGLIO NAZIONALE DELLE RICERCHE
    Inventors: Mosé ROSSI, Gianna PALMIERI, Giuliana CATARA, Ruvo MENOTTI
  • Publication number: 20090238826
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis and, in particular, to a stress-induced phenotype in a transgenic mouse (PIGF?/?) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response. PIGF deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumor formation, pulmonary hypertension, vascular leakage (edema formation) and inflammatory disorders. The invention thus relates to molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monocloncal antibodies and tetrameric peptides, and to the use of these molecules to treat the above-mentioned pathological processes.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 24, 2009
    Applicants: VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW (VIB), LIFE SCIENCES RESEARCH PARTNERS VZW (LSRP)
    Inventors: Peter CARMELIET, Desire Collen, Sandro De Falco, Ruvo Menotti
  • Publication number: 20090162354
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis and, in particular, to a stress-induced phenotype in a transgenic mouse (PIGF?/?) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response PIGF deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumor formation, pulmonary hypertension, vascular leakage (edema formation) and inflammatory disorders. The invention thus relates to molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monoclonal antibodies and tetrameric peptides, and to the use of these molecules to treat the above-mentioned pathological processes.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 25, 2009
    Applicants: VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW (VIB), LIFE SCIENCES RESEARCH PARTNERS VZW (LSRP)
    Inventors: Peter CARMELIET, Desire COLLEN, Sandro DE FALCO, Ruvo MENOTTI
  • Publication number: 20090074765
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis and, in particular, to a stress-induced phenotype in a transgenic mouse (PIGF?/?) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response. PIGF deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumor formation, pulmonary hypertension, vascular leakage (edema formation) and inflammatory disorders. The invention thus relates to molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monoclonal antibodies and tetrameric peptides, and to the use of these molecules to treat the above-mentioned pathological processes.
    Type: Application
    Filed: November 5, 2008
    Publication date: March 19, 2009
    Applicants: VLAAMS INTERUNIVERSITAIR INSTITUUT VOOR BIOTECHNOLOGIE VZW (VIB), LIFE SCIENCES RESEARCH PARTNERS VZW (LSRP)
    Inventors: Peter CARMELIET, Desire Collen, Sandro De Falco, Ruvo Menotti
  • Patent number: 7482004
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis and, in particular, to a stress-induced phenotype in a transgenic mouse (PIGF?/?) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response. PIGF deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumor formation, pulmonary hypertension, vascular leakage (edema formation) and inflammatory disorders. The invention thus relates to molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monoclonal antibodies and tetrameric peptides, and to the use of these molecules to treat the above-mentioned pathological processes.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: January 27, 2009
    Assignees: Vlaams Interuniversitair Instituut voor Biotechnologie vzw, Life Sciences Research Partners vzw.
    Inventors: Peter Carmeliet, Désiré Collen, Sandro De Falco, Ruvo Menotti
  • Publication number: 20030180286
    Abstract: The present invention relates to the field of pathological angiogenesis and arteriogenesis. in particular, a stress induced phenotype in a transgenic mouse (PIGF−/−) that does not produce Placental Growth Factor (PIGF) and that demonstrates an impaired vascular endothelial growth factor (VEGF)-dependent response. PIGF-deficiency has a negative influence on diverse pathological processes of angiogenesis, arteriogenesis and vascular leakage comprising ischemic retinopathy, tumour formation, pulmonary hypertension, vascular leakage (oedema formation) and inflammatory disorders. Molecules that can inhibit the binding of PIGF to its receptor (VEGFR-1), such as monoclonal antibodies and tetrameric peptides. Further, the use of these molecules to treat the latter pathological processes.
    Type: Application
    Filed: November 11, 2002
    Publication date: September 25, 2003
    Inventors: Peter Carmeliet, Desire Collen, Sandro De Falco, Ruvo Menotti