Patents by Inventor Ruwan T. Kurulugama

Ruwan T. Kurulugama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230126290
    Abstract: An ion source may include an ionization chamber to be maintained at atmospheric-pressure. The ion source may further include a reduced-pressure chamber to be maintained at sub-atmospheric pressure, and an ion transfer device comprising an inlet in the ionization chamber and an outlet in the reduced-pressure chamber. The ion transfer device may define an ion path from the inlet to the outlet. The ion transfer device may be positioned to emit ions and neutral gas molecules from the outlet as an expanding beam comprising a low-gas density zone enveloped by a high-gas density region that includes a gas density that is higher than the low-gas density zone. The ion source may be utilized, for example, for ion mobility spectrometry (IMS), mass spectrometry (MS), and hybrid IM-MS.
    Type: Application
    Filed: September 16, 2022
    Publication date: April 27, 2023
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Ruwan T. KURULUGAMA, Kenneth R. NEWTON
  • Patent number: 10267765
    Abstract: In an ion mobility-mass spectrometry (IM-MS) system, an ion mass-isolated data set is acquired by operating a mass filter to apply a mass isolation window having an m/z width such that the mass isolation window moves through a sequence of window positions, each window position being defined by an IM drift time value and an m/z ratio value. The m/z width of the mass isolation window and the sequence of window positions are determined such that the mass isolation window captures ions in a region of interest of a larger all-ions data set. The isolation window may be a wideband isolation window. In comparison to the all-ions data set, the mass-isolated data set may yield reduced ion signal interference and increased selectivity for analytes of interest.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: April 23, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Jun Wang, Ruwan T. Kurulugama, George Stafford, Gregor T. Overney
  • Patent number: 10037873
    Abstract: Multiplexed ion mobility spectrometry (IMS), mass spectrometry (MS) such as time-of-flight mass spectrometry (TOFMS), or hybrid IM-MS is carried out on a sample, and the resulting measurement data are deconvoluted. A pulse sequence controlling ion pulsing is utilized in conjunction with the multiplexing. The pulse sequence may be modified based on the raw measurement data acquired. A demultiplexing matrix based on the modified pulse sequence is utilized to improve deconvolution.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: July 31, 2018
    Assignee: Agilent Technologies, Inc.
    Inventors: Jun Wang, Ruwan T. Kurulugama
  • Patent number: 9916968
    Abstract: An electrode assembly is provided in a high sub-atmospheric pressure region of an ion source, between an ionization chamber and a vacuum region of a spectrometer, such as a mass spectrometer, an ion mobility spectrometer, or an ion mobility-mass spectrometer. The electrode assembly is spaced at a distance from an outlet of an ion transfer device. A voltage source imparts a potential difference between the ion transfer device and the electrode assembly to accelerate ions emitted from the outlet to a collision energy. The collision energy is effective to cause collisional heating of ions in the high sub-atmospheric pressure region without voltage breakdown. The collision energy may be set to cause unfolding of folded biomolecular ions and/or dissociation of ions.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: March 13, 2018
    Assignee: Agilent Technologies, Inc.
    Inventors: Ruwan T. Kurulugama, George Stafford, Jr., Timothy Woods
  • Publication number: 20180053640
    Abstract: An electrode assembly is provided in a high sub-atmospheric pressure region of an ion source, between an ionization chamber and a vacuum region of a spectrometer, such as a mass spectrometer, an ion mobility spectrometer, or an ion mobility-mass spectrometer. The electrode assembly is spaced at a distance from an outlet of an ion transfer device. A voltage source imparts a potential difference between the ion transfer device and the electrode assembly to accelerate ions emitted from the outlet to a collision energy. The collision energy is effective to cause collisional heating of ions in the high sub-atmospheric pressure region without voltage breakdown. The collision energy may be set to cause unfolding of folded biomolecular ions and/or dissociation of ions.
    Type: Application
    Filed: November 30, 2016
    Publication date: February 22, 2018
    Inventors: Ruwan T. Kurulugama, George Stafford, Jr., Timothy Woods
  • Publication number: 20170299550
    Abstract: In an ion mobility-mass spectrometry (IM-MS) system, an ion mass-isolated data set is acquired by operating a mass filter to apply a mass isolation window having an m/z width such that the mass isolation window moves through a sequence of window positions, each window position being defined by an IM drift time value and an m/z ratio value. The m/z width of the mass isolation window and the sequence of window positions are determined such that the mass isolation window captures ions in a region of interest of a larger all-ions data set. The isolation window may be a wideband isolation window. In comparison to the all-ions data set, the mass-isolated data set may yield reduced ion signal interference and increased selectivity for analytes of interest.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 19, 2017
    Inventors: Jun Wang, Ruwan T. Kurulugama, George Stafford, Gregor T. Overney
  • Patent number: 9482642
    Abstract: The collision cross section (CCS) of a sample ion may be calculated by measuring a total drift time taken by the sample ion to travel through an ion mobility spectrometry drift cell to an ion detector. The CCS may be calculated based on the total drift time measured, and on a proportionality coefficient that defines the time taken by the sample ion to travel through a mobility dominated region between the drift cell and the detector. The proportionality coefficient may be determined from measuring the total drift times of reference ions. Calculation of the CCS of the sample ion may also be based on a proportionality coefficient that defines the time taken by the sample ion to travel through a mobility-independent region where the velocity of the ion depends on the electrostatic field strength, mass and the charge state of the ion.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: November 1, 2016
    Assignee: Agilent Technologies, Inc.
    Inventors: Alexander Mordehai, Ruwan T. Kurulugama, Christian Klein, John Fjeldsted
  • Patent number: 9455132
    Abstract: An interface for an ion mobility spectrometry-mass spectrometry (IMS-MS) system includes a first ion guide for receiving ions from an IMS drift cell, and a second ion guide for receiving ions from the first ion guide, and positioned in a chamber separate from the first ion guide. Electrodes of the second ion guide subject the ions to an axial DC electric field while the second ion guide is held at a lower pressure than the first ion guide. In some embodiments, the first ion guide may be an ion funnel and the second ion guide may be a linear multipole device.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: September 27, 2016
    Assignee: Agilent Technologies, Inc.
    Inventors: Alexander Mordehai, Layne Howard, Mark H. Werlich, Ruwan T. Kurulugama, Thomas A. Knotts
  • Publication number: 20160172171
    Abstract: Multiplexed ion mobility spectrometry (IMS), mass spectrometry (MS) such as time-of-flight mass spectrometry (TOFMS), or hybrid IM-MS is carried out on a sample, and the resulting measurement data are deconvoluted. A pulse sequence controlling ion pulsing is utilized in conjunction with the multiplexing. The pulse sequence may be modified based on the raw measurement data acquired. A demultiplexing matrix based on the modified pulse sequence is utilized to improve deconvolution.
    Type: Application
    Filed: October 2, 2015
    Publication date: June 16, 2016
    Inventors: Jun Wang, Ruwan T. Kurulugama
  • Patent number: 9281173
    Abstract: An ion processing device includes electrically conductive vacuum manifold segments serially positioned and enclosing a volume along an axis. The segments are electrically isolated from each other and independently addressable by a voltage source. An ion optics device is positioned in the volume. A voltage differential between each manifold segment and the ion optics device is maintained below a maximum value by applying different voltages to respective manifold segments. The voltage differential may be controlled to avoid voltage breakdown in a low-pressure, high-voltage gas environment. The ion optics device may in some cases be an ion mobility drift cell.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: March 8, 2016
    Assignee: Agilent Technologies, Inc.
    Inventors: Alexander Mordehai, Mark H. Werlich, Ruwan T. Kurulugama, Thomas A. Knotts
  • Publication number: 20150219598
    Abstract: The collision cross section (CCS) of a sample ion may be calculated by measuring a total drift time taken by the sample ion to travel through an ion mobility spectrometry drift cell to an ion detector. The CCS may be calculated based on the total drift time measured, and on a proportionality coefficient that defines the time taken by the sample ion to travel through a mobility dominated region between the drift cell and the detector. The proportionality coefficient may be determined from measuring the total drift times of reference ions. Calculation of the CCS of the sample ion may also be based on a proportionality coefficient that defines the time taken by the sample ion to travel through a mobility-independent region where the velocity of the ion depends on the electrostatic field strength, mass and the charge state of the ion.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 6, 2015
    Applicant: Agilent Technologies, Inc.
    Inventors: Alexander Mordehai, Ruwan T. Kurulugama, Christian Klein, John Fjeldsted
  • Publication number: 20140353483
    Abstract: An ion processing device includes electrically conductive vacuum manifold segments serially positioned and enclosing a volume along an axis. The segments are electrically isolated from each other and independently addressable by a voltage source. An ion optics device is positioned in the volume. A voltage differential between each manifold segment and the ion optics device is maintained below a maximum value by applying different voltages to respective manifold segments. The voltage differential may be controlled to avoid voltage breakdown in a low-pressure, high-voltage gas environment. The ion optics device may in some cases be an ion mobility drift cell.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Alexander Mordehai, Mark H. Werlich, Ruwan T. Kurulugama, Thomas A. Knotts
  • Publication number: 20140353493
    Abstract: An interface for an ion mobility spectrometry-mass spectrometry (IMS-MS) system includes a first ion guide for receiving ions from an IMS drift cell, and a second ion guide for receiving ions from the first ion guide, and positioned in a chamber separate from the first ion guide. Electrodes of the second ion guide subject the ions to an axial DC electric field while the second ion guide is held at a lower pressure than the first ion guide. In some embodiments, the first ion guide may be an ion funnel and the second ion guide may be a linear multipole device.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Inventors: Alexander Mordehai, Layne Howard, Mark H. Werlich, Ruwan T. Kurulugama, Thomas A. Knotts
  • Patent number: 8698075
    Abstract: An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: April 15, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Ruwan T. Kurulugama, Mikhail E. Belov
  • Patent number: 8513591
    Abstract: An ion mobility spectrometer instrument has a drift tube that is partitioned into a plurality of cascaded drift tube segments. A number of electric field activation sources may each be coupled to one or more of the plurality of drift tube segments. A control circuit is configured to control operation of the number of electric field activation sources in a manner that sequentially applies electric fields to the drift tube segments to allow only ions having a predefined ion mobility or range of ion mobilities to travel through the drift tube. The drift tube segments may define a linear drift tube or a closed drift tube with a continuous ion travel path. Techniques are disclosed for operating the ion mobility spectrometer to produce highly resolved ion mobility spectra.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: August 20, 2013
    Assignee: Indiana University Reseach and Technology Corporation
    Inventors: David E. Clemmer, Ruwan T. Kurulugama, Fabiane M. Nachtigall, Zachary Henson, Samuel I. Merenbloom, Stephen J. Valentine
  • Publication number: 20120298853
    Abstract: An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Ruwan T. Kurulugama, Mikhail E. Belov
  • Publication number: 20110121171
    Abstract: An ion mobility spectrometer instrument has a drift tube that is partitioned into a plurality of cascaded drift tube segments. A number of electric field activation sources may each be coupled to one or more of the plurality of drift tube segments. A control circuit is configured to control operation of the number of electric field activation sources in a manner that sequentially applies electric fields to the drift tube segments to allow only ions having a predefined ion mobility or range of ion mobilities to travel through the drift tube. The drift tube segments may define a linear drift tube or a closed drift tube with a continuous ion travel path. Techniques are disclosed for operating the ion mobility spectrometer to produce highly resolved ion mobility spectra.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Inventors: David E. Clemmer, Ruwan T. Kurulugama, Fabiane M. Nachtigall, Zachary Henson, Samuel I. Merenbloom, Stephen J. Valentine
  • Patent number: 7838821
    Abstract: An ion mobility spectrometer instrument has a drift tube that is partitioned into a plurality of cascaded drift tube segments. A number of electric field activation sources may each be coupled to one or more of the plurality of drift tube segments. A control circuit is configured to control operation of the number of electric field activation sources in a manner that applies switched electric fields at a specified switching rate to the drift tube segments to thereby produce at the ion outlet only ions having a predefined ion mobility or range of ion mobilities.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 23, 2010
    Assignee: Indiana University Research and Technology Corporation
    Inventors: David E. Clemmer, Ruwan T. Kurulugama, Fabiane M. Nachtigall, Zachary Henson, Samuel I. Merenbloom, Stephen J. Valentine
  • Publication number: 20090189070
    Abstract: An ion mobility spectrometer instrument has a drift tube that is partitioned into a plurality of cascaded drift tube segments. A number of electric field activation sources may each be coupled to one or more of the plurality of drift tube segments. A control circuit is configured to control operation of the number of electric field activation sources in a manner that applies switched electric fields at a specified switching rate to the drift tube segments to thereby produce at the ion outlet only ions having a predefined ion mobility or range of ion mobilities.
    Type: Application
    Filed: January 21, 2009
    Publication date: July 30, 2009
    Inventors: David E. Clemmer, Ruwan T. Kurulugama, Fabiane M. Nachtigall, Zachary Henson, Samuel I. Merenbloom, Stephen J. Valentine