Patents by Inventor Ruxandra Cristiana Marinescu Tanasoca

Ruxandra Cristiana Marinescu Tanasoca has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230372015
    Abstract: A method of planning a patellar replacement for a patient is provided. Input related to patient anatomy is received (e.g., demographic information) and imaging data is obtained from 2D or 3D medical imaging Biomechanical measurements of the patellofemoral joint are determined including a mechanical axis and pre-operative leg deformity. A 3D model of the patient anatomy is generated based on the input, and the 3D model is characterized in terms of the morphology of the patella. An implant is sized and fitted to the 3D model and implant position and orientation are optimized based on the biomechanics. Results are outputted as a patient report or a surgical plan to a computing device and/or a storage medium. A tracker unit for tracking a patella bone is also provided. The tracker unit comprises a support configured to penetrate the patella and a fiducial marker for detection by a tracking system.
    Type: Application
    Filed: October 8, 2021
    Publication date: November 23, 2023
    Inventors: Ruxandra Cristiana MARINESCU TANASOCA, Brian W. MCKINNON, Elizabeth A. DUXBURY, Russell J. BROOKE, Mark L. MORRISON
  • Publication number: 20230285084
    Abstract: A method for optimizing a knee arthroplasty surgical procedure includes receiving pre-operative data comprising (i) anatomical measurements of the patient, (ii) soft tissue measurements of the patient's anatomy, and (iii) implant parameters identifying an implant to be used in the knee arthroplasty surgical procedure. An equation set is selected from a plurality of pre-generated equation sets based on the pre-operative data. During the knee arthroplasty surgical procedure, patient-specific kinetic and kinematic response values are generated and displayed using an optimization process. The optimization process includes collecting intraoperative data from one or more surgical tools of a computer-assisted surgical system, and using the intraoperative data and the pre-operative data to solve the equation set, thereby yielding the patient-specific kinetic and kinematic response values. A visualization is then provided of the patient-specific kinetic and kinematic response values on the displays.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 14, 2023
    Inventors: Brian W. MCKINNON, Ruxandra Cristiana MARINESCU TANASOCA, Randy C. WINEBARGER, William L. BOWERS, JR., James Bennett WIEBE, III, Nathaniel Milton LENZ, Zachary Christopher WILKINSON, Sean M. HADDOCK, Ryan Lloyd LANDON, Constantinos NIKOU, Branislav JARAMAZ, Paul Alexander TORRIE
  • Patent number: 11684423
    Abstract: A method for optimizing a knee arthroplasty surgical procedure includes receiving pre-operative data comprising (i) anatomical measurements of the patient, (ii) soft tissue measurements of the patient's anatomy, and (iii) implant parameters identifying an implant to be used in the knee arthroplasty surgical procedure. An equation set is selected from a plurality of pre-generated equation sets based on the pre-operative data. During the knee arthroplasty surgical procedure, patient-specific kinetic and kinematic response values are generated and displayed using an optimization process. The optimization process includes collecting intraoperative data from one or more surgical tools of a computer-assisted surgical system, and using the intraoperative data and the pre-operative data to solve the equation set, thereby yielding the patient-specific kinetic and kinematic response values. A visualization is then provided of the patient-specific kinetic and kinematic response values on the displays.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: June 27, 2023
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific Pte. Limited
    Inventors: Brian W. McKinnon, Ruxandra Cristiana Marinescu Tanasoca, Randy C. Winebarger, William L. Bowers, Jr., James Bennett Wiebe, III, Nathaniel Milton Lenz, Zachary Christopher Wilkinson, Sean M. Haddock, Ryan Lloyd Landon, Constantinos Nikou, Branislav Jaramaz, Paul Alexander Torrie
  • Patent number: 11602361
    Abstract: Patient specific implant technology, in which an outline representation of a portion of an outer surface of a periphery of a bone volume is determined and the outline representation is used in operations related to implant matching. In addition, an instrument may be made to match a perimeter shape of a Patient Specific Knee Implant with features for locating holes in a distal femur such that posts or lugs in a femoral implant locate the femoral implant centered medial-laterally within an acceptable degree of precision to prevent overhang of either the side of the femoral implant over the perimeter of the distal femur bone resections. Further, a two-dimensional outline representation may be segmented into segments that correspond to resection cuts used in fitting an implant on a portion of a bone and operations related to implant matching may be performed based on the segments.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: March 14, 2023
    Assignee: Smith & Nephew, Inc.
    Inventors: James Bennett Wiebe, III, Ryan Lloyd Landon, Brian William McKinnon, Randy C. Winebarger, Ruxandra Cristiana Marinescu Tanasoca, Roger Ryan Dees, Jr., William L. Bowers, Jr.
  • Publication number: 20230000556
    Abstract: A method for creating a patient-specific surgical plan includes receiving one or more pre-operative images of a patient having one or more infirmities affecting one or more anatomical joints. three-dimensional anatomical model of the one or more anatomical joints is created based on the one or more pre-operative images. One or more transfer functions and the three-dimensional anatomical model are used to identify a patient-specific implantation geometry that corrects the one or more infirmities. The transfer functions model performance of the one or more anatomical joints as a function of anatomical geometry and anatomical implantation features. surgical plan comprising the patient-specific implantation geometry may then be displayed.
    Type: Application
    Filed: May 19, 2022
    Publication date: January 5, 2023
    Inventors: Brian W. MCKINNON, Ruxandra Cristiana MARINESCU TANASOCA, Randy C. WINEBARGER, William L. BOWERS, JR., James Bennett WIEBE, III, Nathaniel Milton LENZ, Sean M. HADDOCK, Ryan Lloyd LANDON, Shawn P. MCGUAN, Constantinos NIKOU, Elizabeth DUXBURY
  • Patent number: 11337762
    Abstract: A method for creating a patient-specific surgical plan includes receiving one or more pre-operative images of a patient having one or more infirmities affecting one or more anatomical joints, three-dimensional anatomical model of the one or more anatomical joints is created based on the one or more pre-operative images. One or more transfer functions and the three-dimensional anatomical model are used to identify a patient-specific implantation geometry that corrects the one or more infirmities. The transfer functions model performance of the one or more anatomical joints as a function of anatomical geometry and anatomical implantation features, surgical plan comprising the patient-specific implantation geometry may then be displayed.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 24, 2022
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific Pte. Limited
    Inventors: Brian W. McKinnon, Ruxandra Cristiana Marinescu Tanasoca, Randy C. Winebarger, William L. Bowers, Jr., James Bennett Wiebe, III, Nathaniel Milton Lenz, Sean M. Haddock, Ryan Lloyd Landon, Shawn P. McGuan, Constantinos Nikou, Elizabeth Duxbury
  • Publication number: 20220079678
    Abstract: A method for creating a patient-specific surgical plan includes receiving one or more pre-operative images of a patient having one or more infirmities affecting one or more anatomical joints. three-dimensional anatomical model of the one or more anatomical joints is created based on the one or more pre-operative images. One or more transfer functions and the three-dimensional anatomical model are used to identify a patient-specific implantation geometry that corrects the one or more infirmities. The transfer functions model performance of the one or more anatomical joints as a function of anatomical geometry and anatomical implantation features. surgical plan comprising the patient-specific implantation geometry may then be displayed.
    Type: Application
    Filed: February 4, 2020
    Publication date: March 17, 2022
    Inventors: Brian W. MCKINNON, Ruxandra Cristiana MARINESCU TANASOCA, Randy C. WINEBARGER, William L. BOWERS, Jr., James Bennett WIEBE, III, Nathaniel Milton LENZ, Sean M. HADDOCK, Ryan Lloyd LANDON, Shawn P. MCGUAN, Constantinos NIKOU, Elizabeth DUXBURY
  • Publication number: 20210338334
    Abstract: Systems and methods for optimizing parameters of an orthopaedic procedure for a particular patient, including parameters relating to the anatomic and biomechanic fit of an implant or implant system implanted into the patient's joint. These systems and methods may utilize patient-specific information gathered pre-operatively in conjunction with optimization algorithms to determine an optimal implant design and an optimal position and orientation for implantation of the implant into the particular patient's joint.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Inventors: Brian W. MCKINNON, Ruxandra Cristiana MARINESCU TANASOCA, Randy C. WINEBARGER, William L. BOWERS, JR., James Bennett WIEBE, III, Nathaniel Milton LENZ, Zachary Christopher WILKINSON, Sean M. HADDOCK, Ryan Lloyd LANDON
  • Patent number: 11090120
    Abstract: Systems and methods for optimizing parameters of an orthopaedic procedure for a particular patient, including parameters relating to the anatomic and biomechanic fit of an implant or implant system implanted into the patient's joint. These systems and methods may utilize patient-specific information gathered pre-operatively in conjunction with optimization algorithms to determine an optimal implant design and an optimal position and orientation for implantation of the implant into the particular patient's joint.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: August 17, 2021
    Assignee: Smith & Nephew, Inc.
    Inventors: Brian W. McKinnon, Ruxandra Cristiana Marinescu Tanasoca, Randy C. Winebarger, William L. Bowers, Jr., James Bennett Wiebe, III, Nathaniel Milton Lenz, Zachary Christopher Wilkinson, Sean M. Haddock, Ryan Lloyd Landon
  • Publication number: 20200275976
    Abstract: A method for optimizing a knee arthroplasty surgical procedure includes receiving pre-operative data comprising (i) anatomical measurements of the patient, (ii) soft tissue measurements of the patient's anatomy, and (iii) implant parameters identifying an implant to be used in the knee arthroplasty surgical procedure. An equation set is selected from a plurality of pre-generated equation sets based on the pre-operative data. During the knee arthroplasty surgical procedure, patient-specific kinetic and kinematic response values are generated and displayed using an optimization process. The optimization process includes collecting intraoperative data from one or more surgical tools of a computer-assisted surgical system, and using the intraoperative data and the pre-operative data to solve the equation set, thereby yielding the patient-specific kinetic and kinematic response values. A visualization is then provided of the patient-specific kinetic and kinematic response values on the displays.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 3, 2020
    Inventors: Brian W. MCKINNON, Ruxandra Cristiana MARINESCU TANASOCA, Randy C. WINEBARGER, William L. BOWERS, JR., James Bennett WIEBE, III, Nathaniel Milton LENZ, Zachary Christopher WILKINSON, Sean M. HADDOCK, Ryan Lloyd LANDON, Constantinos NIKOU, Branislav JARAMAZ, Paul Alexander TORRIE
  • Publication number: 20200237385
    Abstract: Patient specific implant technology, in which an outline representation of a portion of an outer surface of a periphery of a bone volume is determined and the outline representation is used in operations related to implant matching. In addition, an instrument may be made to match a perimeter shape of a Patient Specific Knee Implant with features for locating holes in a distal femur such that posts or lugs in a femoral implant locate the femoral implant centered medial-laterally within an acceptable degree of precision to prevent overhang of either the side of the femoral implant over the perimeter of the distal femur bone resections. Further, a two-dimensional outline representation may be segmented into segments that correspond to resection cuts used in fitting an implant on a portion of a bone and operations related to implant matching may be performed based on the segments.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 30, 2020
    Inventors: James Bennett WIEBE, III, Ryan Lloyd LANDON, Brian William MCKINNON, Randy C. WINEBARGER, Ruxandra Cristiana MARINESCU TANASOCA, Roger Ryan DEES, JR., William L. BOWERS, JR.
  • Patent number: 10631932
    Abstract: Systems and methods for optimizing parameters of an orthopaedic procedure for a particular patient, including parameters relating to the anatomic and biomechanic fit of an implant or implant system implanted into the patient's joint. These systems and methods may utilize patient-specific information gathered pre-operatively in conjunction with optimization algorithms to determine an optimal implant design and an optimal position and orientation for implantation of the implant into the particular patient's joint.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: April 28, 2020
    Assignee: Smith & Nephew, Inc.
    Inventors: Brian W. Mckinnon, Ruxandra Cristiana Marinescu Tanasoca, Randy C. Winebarger, William L. Bowers, Jr., James Bennett Wiebe, III, Nathaniel Milton Lenz, Zachary Christopher Wilkinson, Sean M. Haddock, Ryan Lloyd Landon
  • Patent number: 10603056
    Abstract: Patient specific implant technology, in which an outline representation of a portion of an outer surface of a periphery of a bone volume is determined and the outline representation is used in operations related to implant matching. In addition, an instrument may be made to match a perimeter shape of a Patient Specific Knee Implant with features for locating holes in a distal femur such that posts or lugs in a femoral implant locate the femoral implant centered medial-laterally within an acceptable degree of precision to prevent overhang of either the side of the femoral implant over the perimeter of the distal femur bone resections. Further, a two-dimensional outline representation may be segmented into segments that correspond to resection cuts used in fitting an implant on a portion of a bone and operations related to implant matching may be performed based on the segments.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: March 31, 2020
    Assignee: Smith & Nephew, Inc.
    Inventors: James Bennett Wiebe, III, Ryan Lloyd Landon, Brian William McKinnon, Randy C. Winebarger, Ruxandra Cristiana Marinescu Tanasoca, Roger Ryan Dees, Jr., William L. Bowers, Jr.
  • Publication number: 20180344407
    Abstract: Systems and methods for optimizing parameters of an orthopaedic procedure for a particular patient, including parameters relating to the anatomic and biomechanic fit of an implant or implant system implanted into the patient's joint. These systems and methods may utilize patient-specific information gathered pre-operatively in conjunction with optimization algorithms to determine an optimal implant design and an optimal position and orientation for implantation of the implant into the particular patient's joint.
    Type: Application
    Filed: August 10, 2018
    Publication date: December 6, 2018
    Inventors: Brian W. MCKINNON, Ruxandra Cristiana MARINESCU TANASOCA, Randy C. WINEBARGER, William L. BOWERS, JR., James Bennett WIEBE, III, Nathaniel Milton LENZ, Zachary Christopher WILKINSON, Sean M. HADDOCK, Ryan Lloyd LANDON
  • Patent number: 10064686
    Abstract: Systems and methods for optimizing parameters of an orthopaedic procedure for a particular patient, including parameters relating to the anatomic and biomechanic fit of an implant or implant system implanted into the patient's joint. These systems and methods may utilize patient-specific information gathered pre-operatively in conjunction with optimization algorithms to determine an optimal implant design and an optimal position and orientation for implantation of the implant into the particular patient's joint.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: September 4, 2018
    Assignee: Smith & Nephew, Inc.
    Inventors: Brian W. McKinnon, Ruxandra Cristiana Marinescu Tanasoca, Randy C. Winebarger, William L. Bowers, Jr., James Bennett Wiebe, III, Nathaniel Milton Lenz, Zachary Christopher Wilkinson, Sean M. Haddock, Ryan Lloyd Landon
  • Publication number: 20150223900
    Abstract: Patient specific implant technology, in which an outline representation of a portion of an outer surface of a periphery of a bone volume is determined and the outline representation is used in operations related to implant matching. In addition, an instrument may be made to match a perimeter shape of a Patient Specific Knee Implant with features for locating holes in a distal femur such that posts or lugs in a femoral implant locate the femoral implant centered medial-laterally within an acceptable degree of precision to prevent overhang of either the side of the femoral implant over the perimeter of the distal femur bone resections. Further, a two-dimensional outline representation may be segmented into segments that correspond to resection cuts used in fitting an implant on a portion of a bone and operations related to implant matching may be performed based on the segments.
    Type: Application
    Filed: September 3, 2013
    Publication date: August 13, 2015
    Inventors: James Bennett Wiebe, III, Ryan Lloyd Landon, Brian William McKinnon, Randy C. Winebarger, Ruxandra Cristiana Marinescu Tanasoca, Roger Ryan Dees, Jr., William L. Bowers, Jr.
  • Publication number: 20150051490
    Abstract: A system for ultrasound scanning includes an ultrasound transducer assembly configured to generate ultrasound scan data indicative of surface features of bony anatomy. The system includes a deformable cuff that transmits ultrasound when filled with an ultrasound-conductive medium. The system also includes a transference mechanism configured to move the ultrasound transducer assembly relative to the deformable cuff along a path while maintaining contact between the ultrasound transducer assembly and the cuff. The transference mechanism is also configured to generate position data indicative of different positions of the ultrasound transducer assembly along the path.
    Type: Application
    Filed: February 6, 2013
    Publication date: February 19, 2015
    Inventors: Brian William McKinnon, Kevin Weaver, F. Javier de Ana, Ruxandra Cristiana Marinescu Tanasoca
  • Publication number: 20130226190
    Abstract: Systems and methods for optimizing parameters of an orthopaedic procedure for a particular patient, including parameters relating to the anatomic and biomechanic fit of an implant or implant system implanted into the patient's joint. These systems and methods may utilize patient-specific information gathered pre-operatively in conjunction with optimization algorithms to determine an optimal implant design and an optimal position and orientation for implantation of the implant into the particular patient's joint.
    Type: Application
    Filed: August 15, 2011
    Publication date: August 29, 2013
    Applicant: SMITH & NEPHEW, INC.
    Inventors: Brian W. Mckinnon, Ruxandra Cristiana Marinescu Tanasoca, Randy C. Winebarger, William L. Bowers, JR., James Bennett Wiebe, III, Nathaniel Milton Lenz, Zachary Christopher Wilkinson, Sean M. Haddock, Ryan Lloyd Landon
  • Publication number: 20130203031
    Abstract: Systems and methods for optimizing parameters of an orthopaedic procedure for a particular patient, including parameters relating to the anatomic and biomechanic fit of an implant or implant system implanted into the patient's joint. These systems and methods may utilize patient-specific information gathered pre-operatively in conjunction with optimization algorithms to determine an optimal implant design and an optimal position and orientation for implantation of the implant into the particular patient's joint.
    Type: Application
    Filed: August 15, 2011
    Publication date: August 8, 2013
    Applicant: SMITH & NEPHEW, INC.
    Inventors: Brian W. Mckinnon, Ruxandra Cristiana Marinescu Tanasoca, Randy C. Winebarger, William L. Bowers, JR., James Bennett Wiebe, III, Nathaniel Milton Lenz, Zachary Christopher Wilkinson, Sean M. Haddock, Ryan Lloyd Landon