Patents by Inventor Ruyi WEI

Ruyi WEI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971303
    Abstract: The present invention belongs to the field of optical technology, disclosing a quadrilateral common-path time-modulated interferometric spectral imaging device and method. The present invention sets up a moving mirror scanning mechanism in a quadrilateral common path interferometer for generating optical path differences that vary with time, so that the quadrilateral common-path time-modulated interferometric spectral imaging device operates in the staring observation mode. The invention can make the quadrilateral common-path time-modulated interferometric spectral imaging device not only retain the advantages of common optical path spectroscopic technology, but also obtain high spectral resolution.
    Type: Grant
    Filed: May 18, 2023
    Date of Patent: April 30, 2024
    Assignee: WUHAN UNIVERSITY
    Inventor: Ruyi Wei
  • Publication number: 20230408337
    Abstract: The present invention belongs to the field of optical technology, disclosing a quadrilateral common-path time-modulated interferometric spectral imaging device and method. The present invention sets up a moving mirror scanning mechanism in a quadrilateral common path interferometer for generating optical path differences that vary with time, so that the quadrilateral common-path time-modulated interferometric spectral imaging device operates in the staring observation mode. The invention can make the quadrilateral common-path time-modulated interferometric spectral imaging device not only retain the advantages of common optical path spectroscopic technology, but also obtain high spectral resolution.
    Type: Application
    Filed: May 18, 2023
    Publication date: December 21, 2023
    Applicant: WUHAN UNIVERSITY
    Inventor: Ruyi WEI
  • Patent number: 11448552
    Abstract: The present disclosure relates to a common-path cube-corner retroreflector interferometer with a large optical path difference and high stability, and an interference technique thereof. The interferometer adopts an asymmetric common-path beam splitting structure using right-angled cube-corner retroreflectors, comprising a semi-transmissive and semi-reflective beam splitter, a plane mirror, a first right-angled cube-corner retroreflector, a second right-angled cube-corner retroreflector and an optical path difference element. The incident light is divided into a first transmitted beam and a second reflected beam, which are respectively reflected by the plane mirror and the right-angled cube-corner retroreflectors several times and then split again, two beams of which become interference outputs along directions perpendicular to an incident direction of the incident light, and the other two beams become interference outputs along directions parallel to the incident light.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: September 20, 2022
    Assignee: XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Ruyi Wei, Lamei Di
  • Publication number: 20210333149
    Abstract: The present disclosure relates to a common-path cube-corner retroreflector interferometer with a large optical path difference and high stability, and an interference technique thereof. The interferometer adopts an asymmetric common-path beam splitting structure using right-angled cube-corner retroreflectors, comprising a semi-transmissive and semi-reflective beam splitter, a plane mirror, a first right-angled cube-corner retroreflector, a second right-angled cube-corner retroreflector and an optical path difference element. The incident light is divided into a first transmitted beam and a second reflected beam, which are respectively reflected by the plane mirror and the right-angled cube-corner retroreflectors several times and then split again, two beams of which become interference outputs along directions perpendicular to an incident direction of the incident light, and the other two beams become interference outputs along directions parallel to the incident light.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 28, 2021
    Inventors: Ruyi WEI, Lamei DI