Patents by Inventor Ruzhang Li

Ruzhang Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942963
    Abstract: A follow-hold switch circuit comprising: a follower; a sampling sub-circuit for voltage sampling; a bootstrap-control sub-circuit, which provides a bootstrap voltage to the sampling sub-circuit when the circuit is in a following state; a sampling-switch-control sub-circuit, which provides a common-mode voltage to a bootstrap capacitor in the bootstrap-control sub-circuit when the circuit is in a holding state; the follower is connected to an output of the sampling sub-circuit; the sampling sub-circuit is connected to the bootstrap-control sub-circuit and the sampling-switch-control sub-circuit respectively through a sampling switch; the present disclosure can effectively improve the linearity of sampling switches.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: March 26, 2024
    Assignees: NO. 24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Daiguo Xu, Dongbing Fu, Zhengping Zhang, Zhou Yu, Jian'an Wang, Can Zhu, Ruzhang Li, Guangbing Chen, Yuxin Wang, Xueliang Xu
  • Patent number: 11936378
    Abstract: An interface circuit and an electronic apparatus, including: a programmable current array (1), generating a first current and a second current transmitted to a common mode and differential mode generation circuit (2) according to an input code, and a third current and a fourth current transmitted to a driving bias generation circuit (3) according to the input code; the common mode and differential mode generation circuit (2), generating a common mode voltage according to the first current, and generating a high level voltage and a low level voltage according to the second current and the common mode voltage; a driving bias generation circuit (3), simulating a load according to the third and fourth currents, and generating a bias voltage based on the load and the low and high level voltages; an output driving circuit (4), converting an input signal into a differential signal in which the common mode voltage and a differential mode amplitude are configurable.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: March 19, 2024
    Assignees: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Ting Li, Gangyi Hu, Ruzhang Li, Yong Zhang, Yabo Ni, Dongbing Fu, Jian'an Wang, Guangbing Chen
  • Patent number: 11848062
    Abstract: A voltage control method and a voltage control circuit for an anti-fuse memory array, including: obtaining a storage data address, dividing the storage data address into multiple subdata addresses, decoding each subdata address to obtain a corresponding group of decoder output signals, converting the corresponding group of decoder output signals into a group of control signals by a corresponding group of high voltage converters; connecting multiple groups of data selectors in series, outputting selection voltages input to each group of data selectors to an anti-fuse unit under the control of the corresponding group of control signals; programming or reading an anti-fuse unit; the selection voltages include one of a programming selection voltage, a reading selection voltage, and a non-designated selection voltage. The present disclosure reduces the number of transistors and saves layout areas when the programming or reading operation is performed.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: December 19, 2023
    Assignee: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Yan Wang, Peijian Zhang, Mingyuan Xu, Xian Chen, Feiyu Jiang, Xiyi Liao, Sheng Qiu, Zhengyuan Zhang, Ruzhang Li, Hequan Jiang, Yonghong Dai
  • Publication number: 20230216502
    Abstract: An interface circuit and an electronic apparatus, including: a programmable current array (1), generating a first current and a second current transmitted to a common mode and differential mode generation circuit (2) according to an input code, and a third current and a fourth current transmitted to a driving bias generation circuit (3) according to the input code; the common mode and differential mode generation circuit (2), generating a common mode voltage according to the first current, and generating a high level voltage and a low level voltage according to the second current and the common mode voltage; a driving bias generation circuit (3), simulating a load according to the third and fourth currents, and generating a bias voltage based on the load and the low and high level voltages; an output driving circuit (4), converting an input signal into a differential signal in which the common mode voltage and a differential mode amplitude are configurable.
    Type: Application
    Filed: January 6, 2021
    Publication date: July 6, 2023
    Applicants: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Ting LI, Gangyi HU, Ruzhang LI, Yong ZHANG, Yabo NI, Dongbing FU, Jian'an WANG, Guangbing CHEN
  • Publication number: 20230198475
    Abstract: A differential-follower control circuit has been provided, comprising: a follower; an output-voltage following module, which controls a voltage at a control terminal of the follower to vary with an output voltage; a substrate-voltage following module, which controls a substrate voltage of an output transistor of the follower to vary with an input voltage; an output terminal of the follower is connected to a first terminal of the output-voltage following module; a second terminal of the output-voltage following module is connected to the control terminal of the follower; a first terminal of the substrate-voltage following module is connected to an input terminal of the follower and a second terminal of the substrate-voltage following module is connected to a substrate of the output transistor; the invention effectively improves the overall linearity of the follower.
    Type: Application
    Filed: January 19, 2021
    Publication date: June 22, 2023
    Applicants: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Daiguo XU, Dongbing FU, Zhengping ZHANG, Zhou YU, Jian'an WANG, Can ZHU, Ruzhang LI, Guangbing CHEN, Yuxin WANG, Xueliang XU
  • Publication number: 20230198537
    Abstract: A follow-hold switch circuit comprising: a follower; a sampling sub-circuit for voltage sampling; a bootstrap-control sub-circuit, which provides a bootstrap voltage to the sampling sub-circuit when the circuit is in a following state; a sampling-switch-control sub-circuit, which provides a common-mode voltage to a bootstrap capacitor in the bootstrap-control sub-circuit when the circuit is in a holding state; the follower is connected to an output of the sampling sub-circuit; the sampling sub-circuit is connected to the bootstrap-control sub-circuit and the sampling-switch-control sub-circuit respectively through a sampling switch; the present disclosure can effectively improve the linearity of sampling switches.
    Type: Application
    Filed: January 19, 2021
    Publication date: June 22, 2023
    Applicants: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Daiguo XU, Dongbing FU, Zhengping ZHANG, Zhou YU, Jian'an WANG, Can ZHU, Ruzhang LI, Guangbing CHEN, Yuxin WANG, Xueliang XU
  • Publication number: 20230197178
    Abstract: A voltage control method and a voltage control circuit for an anti-fuse memory array, including: obtaining a storage data address, dividing the storage data address into multiple subdata addresses, decoding each subdata address to obtain a corresponding group of decoder output signals, converting the corresponding group of decoder output signals into a group of control signals by a corresponding group of high voltage converters; connecting multiple groups of data selectors in series, outputting selection voltages input to each group of data selectors to an anti-fuse unit under the control of the corresponding group of control signals; programming or reading an anti-fuse unit; the selection voltages include one of a programming selection voltage, a reading selection voltage, and a non-designated selection voltage. The present disclosure reduces the number of transistors and saves layout areas when the programming or reading operation is performed.
    Type: Application
    Filed: September 1, 2020
    Publication date: June 22, 2023
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Yan WANG, Peijian ZHANG, Mingyuan XU, Xian CHEN, Feiyu JIANG, Xiyi LIAO, Sheng QIU, Zhengyuan ZHANG, Ruzhang LI, Hequan JIANG, Yonghong DAI
  • Patent number: 11595052
    Abstract: A pipelined analog-to-digital converter and an output calibration method for the same. The pipelined analog-to-digital converter introduces an error calibration mechanism on the basis of traditional pipelined analog-to-digital converters through a control module, an equivalent gain error extraction module, an error storage module and a coding reconstruction module to compensate for gain errors and setup errors caused by operational amplifiers in a pipelined conversion module, so that the analog-to-digital conversion accuracy is improved, and requirements for the gain and bandwidth of the operational amplifier are relaxed, which can effectively reduce the power consumption of the analog-to-digital converter and the complexity of the corresponding analog circuit; a curve fitting method is adopted to obtain an ideal output sequence and then calculate errors; meanwhile, extraction and calibration of equivalent gain errors are all done in digital ways, and therefore accuracy thereof is high.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: February 28, 2023
    Assignee: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Ting Li, Gangyi Hu, Ruzhang Li, Yong Zhang, Dongbing Fu, Zhengbo Huang, Yabo Ni, Jian'an Wang, Guangbing Chen
  • Patent number: 11558064
    Abstract: SAR ADC and sampling method based on single-channel TIS. The SAR ADC comprises: a capacitor array comprising a weight capacitor and a compensation capacitor, a first switch array, a second switch array, a channel switch group and a sampling switch; when in a sampling state: a lower plate of the weight capacitor is connected to an input voltage by means of the first switch array, and an upper plate of the capacitor array is connected to a common mode voltage by the sampling switch and the channel switch group; when in a successive approximation state: the lower plate of the weight capacitor is connected to a reference voltage by the second switch array. Input signals are sampled by using a unified to sampling switch, which solves the problem in the traditional technology that sampling moments are mismatched due to different sampling signals in each time-interleaved channel.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: January 17, 2023
    Assignees: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, CHONGQING GIGACHIP TECHNOLOGY CO. LTD.
    Inventors: Daiguo Xu, Hequan Jiang, Ruzhang Li, Jianan Wang, Guangbing Chen, Yuxin Wang, Dongbing Fu, Liang Li, Yan Wang
  • Publication number: 20220321136
    Abstract: A pipelined analog-to-digital converter and an output calibration method for the same. The pipelined analog-to-digital converter introduces an error calibration mechanism on the basis of traditional pipelined analog-to-digital converters through a control module, an equivalent gain error extraction module, an error storage module and a coding reconstruction module to compensate for gain errors and setup errors caused by operational amplifiers in a pipelined conversion module, so that the analog-to-digital conversion accuracy is improved, and requirements for the gain and bandwidth of the operational amplifier are relaxed, which can effectively reduce the power consumption of the analog-to-digital converter and the complexity of the corresponding analog circuit; a curve fitting method is adopted to obtain an ideal output sequence and then calculate errors; meanwhile, extraction and calibration of equivalent gain errors are all done in digital ways, and therefore accuracy thereof is high.
    Type: Application
    Filed: July 26, 2019
    Publication date: October 6, 2022
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Ting LI, Gangyi HU, Ruzhang LI, Yong ZHANG, Dongbing FU, Zhengbo HUANG, Yabo NI, Jian'an WANG, Guangbing CHEN
  • Publication number: 20220247423
    Abstract: SAR ADC and sampling method based on single-channel TIS. The SAR ADC comprises: a capacitor array comprising a weight capacitor and a compensation capacitor, a first switch array, a second switch array, a channel switch group and a sampling switch; when in a sampling state: a lower plate of the weight capacitor is connected to an input voltage by means of the first switch array, and an upper plate of the capacitor array is connected to a common mode voltage by the sampling switch and the channel switch group; when in a successive approximation state: the lower plate of the weight capacitor is connected to a reference voltage by the second switch array. Input signals are sampled by using a unified to sampling switch, which solves the problem in the traditional technology that sampling moments are mismatched due to different sampling signals in each time-interleaved channel.
    Type: Application
    Filed: January 7, 2020
    Publication date: August 4, 2022
    Applicants: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, CHONGQING GIGACHIP TECHNOLOGY CO. LTD.
    Inventors: DAIGUO XU, HEQUAN JIANG, RUZHANG LI, JIANAN WANG, GUANGBING CHEN, YUXIN WANG, DONGBING FU, LIANG LI, YAN WANG
  • Patent number: 11394389
    Abstract: The present disclosure provides a buffer circuit and a buffer. The buffer circuit includes: an input follower circuit for following the voltage change of the first input signal; an input follower linearity boosting circuit for improving follower linearity of the input follower circuit; a first voltage bootstrap circuit for bootstrapping the voltage of the first input signal; a second voltage bootstrap circuit for bootstrapping the voltage of the second input signal; a third voltage bootstrap circuit for providing corresponding quiescent operation point voltage; a compensation follower circuit for following the compensation voltage; a compensation follower linearity boosting circuit for improving follower linearity of the compensation follower circuit; a first load for collecting the buffered voltage; a bias circuit for providing a bias current for the buffer; a bias linearity boosting circuit for improving linearity of the bias circuit; a second load for generating a nonlinear compensation current.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: July 19, 2022
    Assignee: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Ting Li, Gangyi Hu, Ruzhang Li, Yong Zhang, Zhengbo Huang, Yabo Ni, Xingfa Huang, Jian'an Wang, Guangbing Chen, Dongbing Fu, Jun Yuan, Zicheng Xu
  • Patent number: 11362666
    Abstract: The present disclosure provides a low-jitter frequency division clock circuit, including: a clock control signal generation circuit, to generate clock signals having different phases; a low-level narrow pulse width clock control signal generation circuit, to generate a low-level narrow pulse width clock control signal; a high-level narrow pulse width clock control signal generation circuit, to generate a high-level narrow pulse width clock control signal; and a frequency division clock generation circuit, to generate a frequency division clock signal according to low-level narrow pulse width clock control signal and high-level narrow pulse width clock control signal. The delay from a clock input end to an output end of low-jitter frequency division clock circuit is up to three logic gates.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: June 14, 2022
    Assignee: NO. 24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Tao Liu, Jian'an Wang, Yuxin Wang, Guangbing Chen, Dongbing Fu, Ruzhang Li, Shengdong Hu, Zhengping Zhang, Jun Luo, Daiguo Xu, Minming Deng, Yan Wang
  • Publication number: 20210305943
    Abstract: Provided in the present invention is a transconductance amplifier based on a self-biased cascode structure. The transconductance amplifier includes a self-biased cascode input-stage structure constituted by PMOS (P-channel Metal Oxide Semiconductor) input transistors M1, M2, M3 and M4, a self-biased cascode first-stage load structure constituted by NMOS (N-channel Metal Oxide Semiconductor) transistors M5, M6, M7 and M8, a second-stage common-source amplifier structure constituted by an NMOS transistor M9 and a PMOS transistor M10, a bias circuit structure constituted by NMOS transistors M11 and M12 and a PMOS transistor M13, an amplifier compensation capacitor Cc, an amplifier load capacitor CL, a reference current source Iref and a PMOS transistor MO that provides a constant current source function. Further provided in the present invention is a transconductance amplifier based on a self-biased cascode structure, which adopts an NMOS transistor as an input transistor.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 30, 2021
    Inventors: DAIGUO XU, GANGYI HU, RUZHANG LI, JIAN'AN WANG, GUANGBING CHEN, YUXIN WANG, TAO LIU, LU LIU, MINMING DENG, HANFU SHI, XU WANG
  • Publication number: 20210297080
    Abstract: The present disclosure provides a low-jitter frequency division clock circuit, including: a clock control signal generation circuit, to generate clock signals having different phases; a low-level narrow pulse width clock control signal generation circuit, to generate a low-level narrow pulse width clock control signal; a high-level narrow pulse width clock control signal generation circuit, to generate a high-level narrow pulse width clock control signal; and a frequency division clock generation circuit, to generate a frequency division clock signal according to low-level narrow pulse width clock control signal and high-level narrow pulse width clock control signal. The delay from a clock input end to an output end of low-jitter frequency division clock circuit is up to three logic gates.
    Type: Application
    Filed: December 13, 2018
    Publication date: September 23, 2021
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Tao LIU, Jian'an WANG, Yuxin WANG, Guangbing CHEN, Dongbing FU, Ruzhang LI, Shengdong HU, Zhengping ZHANG, Jun LUO, Daiguo XU, Minming DENG, Yan WANG
  • Patent number: 11121677
    Abstract: Provided in the present invention is a transconductance amplifier based on a self-biased cascode structure. The transconductance amplifier includes a self-biased cascode input-stage structure constituted by PMOS (P-channel Metal Oxide Semiconductor) input transistors M1, M2, M3 and M4, a self-biased cascode first-stage load structure constituted by NMOS (N-channel Metal Oxide Semiconductor) transistors M5, M6, M7 and M8, a second-stage common-source amplifier structure constituted by an NMOS transistor M9 and a PMOS transistor M10, a bias circuit structure constituted by NMOS transistors M11 and M12 and a PMOS transistor M13, an amplifier compensation capacitor Cc, an amplifier load capacitor CL, a reference current source Iref and a PMOS transistor M0 that provides a constant current source function. Further provided in the present invention is a transconductance amplifier based on a self-biased cascode structure, which adopts an NMOS transistor as an input transistor.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: September 14, 2021
    Assignee: CHINA ELECTRONIC TECHNOLOGY CORPORATION, 24TH RESEARCH INSTITUTE
    Inventors: Daiguo Xu, Gangyi Hu, Ruzhang Li, Jian'an Wang, Guangbing Chen, Yuxin Wang, Tao Liu, Lu Liu, Minming Deng, Hanfu Shi, Xu Wang
  • Publication number: 20210281269
    Abstract: The present disclosure provides a buffer circuit and a buffer. The buffer circuit includes: an input follower circuit for following the voltage change of the first input signal; an input follower linearity boosting circuit for improving follower linearity of the input follower circuit; a first voltage bootstrap circuit for bootstrapping the voltage of the first input signal; a second voltage bootstrap circuit for bootstrapping the voltage of the second input signal; a third voltage bootstrap circuit for providing corresponding quiescent operation point voltage; a compensation follower circuit for following the compensation voltage; a compensation follower linearity boosting circuit for improving follower linearity of the compensation follower circuit; a first load for collecting the buffered voltage; a bias circuit for providing a bias current for the buffer; a bias linearity boosting circuit for improving linearity of the bias circuit; a second load for generating a nonlinear compensation current.
    Type: Application
    Filed: December 13, 2018
    Publication date: September 9, 2021
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Ting LI, Gangyi HU, Ruzhang LI, Yong ZHANG, Zhengbo HUANG, Yabo NI, Xingfa HUANG, Jian'an WANG, Guangbing CHEN, Dongbing FU, Jun YUAN, Zicheng XU
  • Publication number: 20210126646
    Abstract: The present disclosure provides a pipelined analog-to-digital converter having input signal pre-comparison and charge redistribution, including: one-stage or multi-stage of pipelined structure unit, a first flash analog-to-digital converter, and an adjusting output unit. Each stage of the pipelined structure unit is used to quantify the input signal. The first flash analog-to-digital converter quantizes a residual signal output by a final pipelined structure unit, and outputs a corresponding quantized value. The adjusting output unit combines each of the quantized values according to a connection order of the multi-stage pipelined structure unit and a flash analog-to-digital conversion unit to output a complete quantization result.
    Type: Application
    Filed: September 11, 2017
    Publication date: April 29, 2021
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Zhengbo HUANG, Ting LI, Yong ZHANG, Ruzhang LI, Guangbing CHEN, Yabo NI
  • Patent number: 10979066
    Abstract: The present disclosure provides a pipelined analog-to-digital converter having input signal pre-comparison and charge redistribution, including: one-stage or multi-stage of pipelined structure unit, a first flash analog-to-digital converter, and an adjusting output unit. Each stage of the pipelined structure unit is used to quantify the input signal. The first flash analog-to-digital converter quantizes a residual signal output by a final pipelined structure unit, and outputs a corresponding quantized value. The adjusting output unit combines each of the quantized values according to a connection order of the multi-stage pipelined structure unit and a flash analog-to-digital conversion unit to output a complete quantization result.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: April 13, 2021
    Assignee: NO. 24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Zhengbo Huang, Ting Li, Yong Zhang, Ruzhang Li, Guangbing Chen, Yabo Ni
  • Patent number: 10944390
    Abstract: The present disclosure provides a high-speed and low-noise dynamic comparator, which includes: an input unit, including an input NMOS transistor and an input PMOS transistor; a latch unit, including a latching NMOS transistor and a latching PMOS transistor, where the latching NMOS transistor and the latching PMOS transistor are connected to form a latch structure; a pull-up unit, including a pull-up PMOS transistor connected to the input NMOS transistor; and a substrate bootstrap voltage generation circuit, generating a substrate bootstrap voltage.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: March 9, 2021
    Assignee: NO. 24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Daiguo Xu, Gangyi Hu, Ruzhang Li, Jian'an Wang, Guangbing Chen, Dongbing Fu, Shiliu Xu, Tao Liu, Jie Pu, Zhihua Feng