Patents by Inventor Rwik Sengupta

Rwik Sengupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10361195
    Abstract: An embodiment includes a semiconductor device, comprising: a substrate; a continuous diffusion region disposed on the substrate; a first gate structure disposed on the continuous diffusion region; a second gate structure disposed on the continuous diffusion region; an isolation gate structure disposed between the first gate structure and the second gate structure and disposed adjacent to the both the first gate structure and the second gate structure; a first diffusion region of the continuous diffusion region disposed between the first gate structure and the isolation gate structure; a second diffusion region of the continuous diffusion region disposed between the second gate structure and the isolation gate structure; a conductive layer disposed on the first and second diffusion regions; and an isolation gate contact disposed over the isolation gate structure and electrically insulated from the first diffusion region.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: July 23, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Rwik Sengupta, Mark S. Rodder
  • Publication number: 20190181140
    Abstract: A CMOS system on chip including a series of partial gate-all-around field effect transistors. Each partial GAA FET includes a fin having a stack of channel regions, source and drain regions on opposite sides of the fin, a dielectric separation region including a dielectric material between first and second channel regions, a gate stack on the fin, and a pair of sidewall spacers on opposite sides of the gate stack. A portion of the dielectric separation region has a length from an outer edge of the dielectric separation region to an inner edge of a respective sidewall spacer. The length of the portion of the dielectric separation region of one of the partial GAA FETs is different than the length of the portion of the dielectric separation region of another one of the partial GAA FETs.
    Type: Application
    Filed: May 11, 2018
    Publication date: June 13, 2019
    Inventors: Mark S. Rodder, Borna J. Obradovic, Dharmendar Palle, Rwik Sengupta, Mohammad Ali Pourghaderi
  • Patent number: 10297673
    Abstract: Methods of forming a semiconductor device are provided. The methods may include forming a plurality of fin-shaped channels on a substrate, forming a gate structure crossing over the plurality of fin-shaped channels and forming a source/drain adjacent a side of the gate structure. The source/drain may cross over the plurality of fin-shaped channels and may be electrically connected to the plurality of fin-shaped channels. The methods may also include forming a metallic layer on an upper surface of the source/drain and forming a conductive contact on the metallic layer opposite the source/drain. The conductive contact may have a first length in a longitudinal direction of the metallic layer that is less than a second length of the metallic layer in the longitudinal direction of the metallic layer.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: May 21, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jorge A. Kittl, Ganesh Hegde, Rwik Sengupta, Borna J. Obradovic, Mark S. Rodder
  • Publication number: 20190148312
    Abstract: A hardware-embedded security system is described. The system includes connective components, circuit elements and an insulator. The connective components include a variable conductivity layer that is conductive for a first stoichiometry and insulating for a second stoichiometry. The variable conductivity layer is conductive for a first portion of the connective components connected to a first portion of the circuit elements. The variable conductivity layer is insulating for a second portion of the connective components connected to a second portion of the circuit elements. Thus, the first portion of the circuit elements are active and the second portion of the circuit elements are inactive. The insulator is adjacent to at least a portion of each of the connective components. The first stoichiometry may be indistinguishable from the second stoichiometry via optical imaging and electron imaging of a portion of the insulator and the variable conductivity layer.
    Type: Application
    Filed: March 21, 2018
    Publication date: May 16, 2019
    Inventors: Harsono S. Simka, Ganesh Hegde, Joon Goo Hong, Rwik Sengupta, Mark S. Rodder
  • Publication number: 20190148502
    Abstract: A field effect transistor including a source region, a drain region, a channel region extending between the source region and the drain region, a gate on the channel region, a gate contact on the gate at an active region of the gate, a source contact on the source region, a drain contact on the drain region, and recesses in the source and drain contacts substantially aligned with the gate contact. Upper surfaces of the recesses in the source and drain contacts are spaced below an upper surface of the gate by a depth.
    Type: Application
    Filed: September 4, 2018
    Publication date: May 16, 2019
    Inventors: Rwik Sengupta, Mark Rodder, Joon Goo Hong, Titash Rakshit
  • Publication number: 20190148298
    Abstract: An integrated circuit including a series of field effect transistors. Each field effect transistor includes a source region, a drain region, a channel region extending between the source region and the drain region, a gate on the channel region, a gate contact on the gate at an active region of the gate, a source contact on the source region, and a drain contact on the drain region. Upper surfaces of the source and drain contacts are spaced below an upper surface of the gate by a depth.
    Type: Application
    Filed: April 9, 2018
    Publication date: May 16, 2019
    Inventors: Rwik Sengupta, Mark Rodder, Joon Goo Hong, Titash Rakshit
  • Publication number: 20190012593
    Abstract: A neuromorphic multi-bit digital weight cell configured to store a series of potential weights for a neuron in an artificial neural network. The neuromorphic multi-bit digital weight cell includes a parallel cell including a series of passive resistors in parallel and a series of gating transistors. Each gating transistor of the series of gating transistors is in series with one passive resistor of the series of passive resistors. The neuromorphic cell also includes a series of programming input lines connected to the series of gating transistors, an input terminal connected to the parallel cell, and an output terminal connected to the parallel cell.
    Type: Application
    Filed: November 7, 2017
    Publication date: January 10, 2019
    Inventors: Borna J. Obradovic, Titash Rakshit, Rwik Sengupta, Joon Goo Hong, Ryan M. Hatcher, Jorge A. Kittl, Mark S. Rodder
  • Patent number: 10164121
    Abstract: A semiconductor device including: a substrate; a first active layer on the substrate and including a first channel between a source and a drain; a second active layer stacked on the first active layer, the second active layer including a second channel between the source and the drain; a first gate corresponding to the first channel; and a second gate electrically separated from the first gate and corresponding to the second channel.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: December 25, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ryan M. Hatcher, Borna J. Obradovic, Joon Goo Hong, Rwik Sengupta
  • Patent number: 10153368
    Abstract: A system of unipolar digital logic. Ferroelectric field effect transistors having channels of a first polarity, are combined, in circuits, with simple field effect transistors having channels of the same polarity, to form logic gates and/or memory cells.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: December 11, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ryan M. Hatcher, Rwik Sengupta, Chris Bowen
  • Publication number: 20180269152
    Abstract: A semiconductor integrated circuit including a substrate, a series of metal layers, and a series of insulating layers. The metal layers and the insulating layers are alternately arranged in a stack on the substrate. The semiconductor integrated circuit also includes at least two standard cells in the substrate and at least one power rail crossing over boundaries of the at least two standard cells. The power rail includes a vertical section of conductive material extending continuously through at least two vertical levels of the stack. The two vertical levels of the stack include one metal layer and one insulating layer. The insulating layer is above the metal layer.
    Type: Application
    Filed: August 18, 2017
    Publication date: September 20, 2018
    Inventors: Rwik Sengupta, Andrew Paul Hoover, Matthew Berzins, Sam Tower, Mark S. Rodder
  • Publication number: 20180254350
    Abstract: A system of unipolar digital logic. Ferroelectric field effect transistors having channels of a first polarity, are combined, in circuits, with simple field effect transistors having channels of the same polarity, to form logic gates and/or memory cells.
    Type: Application
    Filed: July 21, 2017
    Publication date: September 6, 2018
    Inventors: Ryan M. Hatcher, Rwik Sengupta, Chris Bowen
  • Patent number: 10026751
    Abstract: A semiconductor device includes a series of metal routing layers and a complementary pair of planar field-effect transistors (FETs) on an upper metal routing layer of the metal routing layers. The upper metal routing layer is M3 or higher. Each of the FETs includes a channel region of a crystalline material. The crystalline material may include one or more transition metal dichalcogenide materials such as MoS2, WS2, WSe2, and/or combinations thereof.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: July 17, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Titash Rakshit, Borna J. Obradovic, Rwik Sengupta, Wei-E Wang, Ryan Hatcher, Mark S. Rodder
  • Patent number: 9929180
    Abstract: Provided is a semiconductor device including a substrate with a plurality of logic cells, transistors provided in the plurality of logic cells, contact plugs connected to electrodes of the transistors, first via plugs in contact with top surfaces of the contact plugs, and first wires in contact with top surfaces of the first via plugs. The first wires may include a common conductive line connected to the plurality of logic cells through the contact plugs, and all of the first wires may be shaped like a straight line extending parallel to a specific direction.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: March 27, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Raheel Azmat, Rwik Sengupta, Chulhong Park, Kwanyoung Chun
  • Publication number: 20170301672
    Abstract: An integrated circuit (IC) including a circuit block including a plurality of complementary metal oxide semiconductor field-effect transistors (CMOSFETs), and a tunnel field-effect transistor (TFET) between the circuit block and ground for power gating the circuit block.
    Type: Application
    Filed: September 26, 2016
    Publication date: October 19, 2017
    Inventors: Titash Rakshit, Mark Rodder, Rwik Sengupta
  • Patent number: 9768062
    Abstract: A method for forming a low parasitic capacitance contact to a source-drain structure of a fin field effect transistor device. In some embodiments the method includes etching a long trench down to the source-drain structure, the trench being sufficiently long to extend across all the of source-drain regions of the device. A conductive layer is formed on the source-drain structure, and the trench is filled with a first fill material. A second, narrower trench is opened along a portion of the length of the first trench, and filled with a second fill material. The first fill material may be conductive, and may form the contact. If the first fill material is not conductive, a third trench may be opened, in the portion of the first trench not filled with the second fill material, and filled with a conductive material, to form the contact.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: September 19, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jorge A. Kittl, David Seo, Kota Oikawa, Kim Changhwa, Rwik Sengupta, Mark S. Rodder
  • Publication number: 20170229478
    Abstract: Provided is a semiconductor device including a substrate with a plurality of logic cells, transistors provided in the plurality of logic cells, contact plugs connected to electrodes of the transistors, first via plugs in contact with top surfaces of the contact plugs, and first wires in contact with top surfaces of the first via plugs. The first wires may include a common conductive line connected to the plurality of logic cells through the contact plugs, and all of the first wires may be shaped like a straight line extending parallel to a specific direction.
    Type: Application
    Filed: April 25, 2017
    Publication date: August 10, 2017
    Inventors: Raheel AZMAT, RWIK SENGUPTA, CHULHONG PARK, KWANYOUNG CHUN
  • Patent number: 9728502
    Abstract: A method is disclosed to form a metal-oxysilicate diffusion barrier for a damascene metallization. A trench is formed in an Inter Layer Dielectric (ILD) material. An oxysilicate formation-enhancement layer comprising silicon, carbon, oxygen, a constituent component of the ILD, or a combination thereof, is formed in the trench. A barrier seed layer is formed on the oxysilicate formation-enhancement layer comprising an elemental metal selected from a first group of elemental metals in combination with an elemental metal selected from a second group of elemental metals. An elemental metal in the second group is immiscible in copper or an alloy thereof, has a diffusion constant greater than a self-diffusion of copper or an alloy thereof; does not reducing silicon-oxygen bonds during oxysilicate formation; and promotes adhesion of copper or an alloy of copper to the metal-oxysilicate barrier diffusion layer. The structure is then annealed to form a metal-oxysilicate diffusion barrier.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: August 8, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ganesh Hegde, Mark Rodder, Rwik Sengupta, Chris Bowen
  • Patent number: 9691860
    Abstract: A strain-relieved buffer is formed by forming a first silicon-germanium (SiGe) layer directly on a surface of a bulk silicon (Si) substrate. The first SiGe layer is patterned to form at least two SiGe structures so there is a space between the SiGe structures. An oxide is formed on the SiGe structures, and the SiGe structures are mesa annealed. The oxide is removed to expose a top portion of the SiGe structures. A second SiGe layer is formed on the exposed portion of the SiGe structures so that the second SiGe layer covers the space between the SiGe structures, and so that a percentage Ge content of the first and second SiGe layers are substantially equal. The space between the SiGe structures is related to the sizes of the structures adjacent to the space and an amount of stress relief that is associated with the structures.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: June 27, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Wei-E Wang, Mark S. Rodder, Rwik Sengupta
  • Patent number: 9685564
    Abstract: A Gate-All-Around (GAA) Field Effect Transistor (FET) can include a horizontal nanosheet conductive channel structure having a width in a horizontal direction in the GAA FET, a height that is perpendicular to the horizontal direction, and a length that extends in the horizontal direction, where the width of the horizontal nanosheet conductive channel structure defines a physical channel width of the GAA FET. First and second source/drain regions can be located at opposing ends of the horizontal nanosheet conductive channel structure and a unitary gate material completely surrounding the horizontal nanosheet conductive channel structure.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: June 20, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Rwik Sengupta, Mark Stephen Rodder, Joon Goo Hong, Titash Rakshit
  • Publication number: 20170148922
    Abstract: A semiconductor device including: a substrate; a first active layer on the substrate and including a first channel between a source and a drain; a second active layer stacked on the first active layer, the second active layer including a second channel between the source and the drain; a first gate corresponding to the first channel; and a second gate electrically separated from the first gate and corresponding to the second channel.
    Type: Application
    Filed: June 13, 2016
    Publication date: May 25, 2017
    Inventors: Ryan M. Hatcher, Borna J. Obradovic, Joon Goo Hong, Rwik Sengupta