Patents by Inventor Ryan A. Sturmer

Ryan A. Sturmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10183292
    Abstract: A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: January 22, 2019
    Assignee: ADVANCED LIQUID LOGIC, INC.
    Inventors: Ryan A. Sturmer, Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan, Philip Y. Paik
  • Patent number: 9492822
    Abstract: Methods comprising measuring the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode are disclosed. Computer readable mediums storing processor executable instructions for performing the method, and systems are also disclosed. The systems comprise a processor, memory and code stored in the memory that when executed cause the processor at least to: receive an output voltage signal, superimpose an excitation signal onto the output voltage signal to produce a superimposed signal, connect the superimposed signal to an electrode in a droplet actuator, suppress the output voltage signal, when detecting an impedance of the electrode, and measure the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: November 15, 2016
    Assignee: Advanced Liquid Logic, Inc.
    Inventors: Ryan A. Sturmer, Vijay Srinivasan, Arjun Sudarsan
  • Patent number: 9321049
    Abstract: A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: April 26, 2016
    Assignee: ADVANCED LIQUID LOGIC, INC.
    Inventors: Ryan A. Sturmer, Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan, Philip Y. Paik
  • Publication number: 20160096174
    Abstract: A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 7, 2016
    Applicant: Advanced Liquid Logic, Inc.
    Inventors: Ryan A. Sturmer, Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan, Philip Y. Paik
  • Publication number: 20160074863
    Abstract: Methods comprising measuring the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode are disclosed. Computer readable mediums storing processor executable instructions for performing the method, and systems are also disclosed. The systems comprise a processor, memory and code stored in the memory that when executed cause the processor at least to: receive an output voltage signal, superimpose an excitation signal onto the output voltage signal to produce a superimposed signal, connect the superimposed signal to an electrode in a droplet actuator, suppress the output voltage signal, when detecting an impedance of the electrode, and measure the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 17, 2016
    Applicant: ADVANCED LIQUID LOGIC, INC.
    Inventors: Ryan A. Sturmer, Vijay Srinivasan, Arjun Sudarsan
  • Patent number: 9188615
    Abstract: Methods comprising measuring the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode are disclosed. Computer readable mediums storing processor executable instructions for performing the method, and systems are also disclosed. The systems comprise a processor, memory and code stored in the memory that when executed cause the processor at least to: receive an output voltage signal, superimpose an excitation signal onto the output voltage signal to produce a superimposed signal, connect the superimposed signal to an electrode in a droplet actuator, suppress the output voltage signal, when detecting an impedance of the electrode, and measure the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: November 17, 2015
    Assignee: ADVANCED LIQUID LOGIC, INC.
    Inventors: Ryan Sturmer, Vijay Srinivasan, Arjun Sudarsan
  • Publication number: 20140332380
    Abstract: A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Applicant: Advanced Liquid Logic, Inc.
    Inventors: Ryan A. Sturmer, Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan, Philip Y. Paik
  • Patent number: 8872527
    Abstract: A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: October 28, 2014
    Assignee: Advanced Liquid Logic, Inc.
    Inventors: Ryan A. Sturmer, Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan, Philip Y. Paik
  • Publication number: 20140190830
    Abstract: Methods comprising measuring the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode are disclosed. Computer readable mediums storing processor executable instructions for performing the method, and systems are also disclosed. The systems comprise a processor, memory and code stored in the memory that when executed cause the processor at least to: receive an output voltage signal, superimpose an excitation signal onto the output voltage signal to produce a superimposed signal, connect the superimposed signal to an electrode in a droplet actuator, suppress the output voltage signal, when detecting an impedance of the electrode, and measure the impedance of the electrode produced by the excitation signal, wherein the impedance indicates presence of liquid at the electrode.
    Type: Application
    Filed: May 8, 2012
    Publication date: July 10, 2014
    Applicant: ADVANCED LIQUID LOGIC, INC.
    Inventors: Ryan Sturmer, Vijay Srinivasan, Arjun Sudarsan
  • Publication number: 20130293246
    Abstract: The embodiments described herein provide methods of measuring capacitance, detecting a droplet at a position, determining a thickness of an oil film and determining temperature in a droplet actuator. Specifically, the capacitance detection method may be used as a real-time verification tool in order to detect the absence, presence, and/or partial presence of a droplet at an electrode, analyze droplet properties, measure droplet size or volume, optimize the speed of droplet operation and detect air bubbles.
    Type: Application
    Filed: November 15, 2011
    Publication date: November 7, 2013
    Applicant: Advanced Liquid Logic Inc.
    Inventors: Michael G. Pollack, Ryan A. Sturmer, Philip Y. Paik, Vamsee K. Pamula, Vijay Srinivasan
  • Publication number: 20130217113
    Abstract: The invention relates to a droplet actuator for conducting droplet operations. The actuator includes a bottom substrate and a top substrate separated from the bottom substrate to form a gap. An arrangement of droplet operations electrodes may be located on a surface of the bottom substrate and/or top substrate. Optionally, a sample reservoir may hold a quantity of a sample fluid containing cells. A disruption device which can take various forms is used to lyse the cells in the sample or in a sample droplet to thereby conduct operations on samples having lysed cells therein.
    Type: Application
    Filed: July 12, 2011
    Publication date: August 22, 2013
    Applicant: ADVANCED LIQUID LOGIC INC.
    Inventors: Vijay Srinivasan, William Craig Bauer, Gregory F. Smith, Ryan A. Sturmer, Zhishan Hua, Allen E. Eckhardt
  • Publication number: 20130168250
    Abstract: The present invention is directed to droplet actuator systems, devices, and methods. In one embodiment, a microfluidic article of manufacture is provided. The microfluidic article of manufacture includes a first substrate; a second substrate separated from the first substrate to form a droplet operations gap; gap height setting spacers associated with the first and/or second substrate or situated between the first and second substrates; a spring forcing the second substrate against the gap height setting spacers, thereby establishing a substantially uniform gap height between the first and second substrates; and electrodes associated with the first and/or second substrate and configured to conduct droplet operations in the droplet operations gap.
    Type: Application
    Filed: September 15, 2011
    Publication date: July 4, 2013
    Applicant: ADVANCED LIQUID LOGIC INC
    Inventors: Michael Fogleman, Ryan A. Sturmer, Gregory F. Smith
  • Patent number: 8364315
    Abstract: The present invention provides modified droplet actuator systems, software, and software-executed methods for use in droplet actuator operation and droplet actuator systems that are configured and programmed to execute such software. An aspect of the software components of the invention is an interface description file for each hardware component of a microfluidics system that allows hardware components to be changed without modifying the program for performing droplet operations protocols. Another aspect of the software components of the invention is the establishment of electrode-to-electrode relationships and other aspects of droplet actuator configurations, which may be used when programming droplet operations protocols. Another aspect of the software components of the invention is a physical design library of predefined electrode elements that may be used by a droplet actuator designer when constructing a layout of electrodes.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: January 29, 2013
    Assignee: Advanced Liquid Logic Inc.
    Inventors: Ryan A. Sturmer, Gregory F. Smith, Michael Fogleman, Keith R. Brafford, Sai Ram Rongali
  • Publication number: 20130018611
    Abstract: A method of determining a gap height in a droplet actuator including measuring an impedance between a droplet operations electrode of a first substrate in a droplet actuator and ground electrode of a second substrate in the droplet actuator, storing a lookup table that associates impedances to heights of gaps between the first substrate and the second substrate, querying the lookup table for the impedance measured between the droplet operations electrode of the first substrate and the ground electrode of the second substrate; and retrieving a height of a gap associated with the impedance.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 17, 2013
    Applicant: ADVANCED LIQUID LOGIC INC
    Inventor: Ryan A. Sturmer
  • Publication number: 20110213499
    Abstract: The present invention provides modified droplet actuator systems, software, and software-executed methods for use in droplet actuator operation and droplet actuator systems that are configured and programmed to execute such software. An aspect of the software components of the invention is an interface description file for each hardware component of a microfluidics system that allows hardware components to be changed without modifying the program for performing droplet operations protocols. Another aspect of the software components of the invention is the establishment of electrode-to-electrode relationships and other aspects of droplet actuator configurations, which may be used when programming droplet operations protocols. Another aspect of the software components of the invention is a physical design library of predefined electrode elements that may be used by a droplet actuator designer when constructing a layout of electrodes.
    Type: Application
    Filed: August 13, 2009
    Publication date: September 1, 2011
    Applicant: ADVANCED LIQUID LOGIC, INC.
    Inventors: Ryan A. Sturmer, Gregory F. Smith, Michael Fogleman, Keith R. Brafford, Sai Ram Rongali
  • Patent number: 7939021
    Abstract: A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: May 10, 2011
    Assignees: Advanced Liquid Logic, Inc., Duke University
    Inventors: Gregory F. Smith, Ryan A. Sturmer, Philip Y. Paik, Vijay Srinivasan, Michael G. Pollack, Vamsee K. Pamula, Keith R. Brafford, Richard M. West
  • Patent number: 7822510
    Abstract: Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: October 26, 2010
    Assignees: Advanced Liquid Logic, Inc., Duke University
    Inventors: Philip Y. Paik, Michael G. Pollack, Ryan A. Sturmer, Gregory F. Smith, Keith R. Brafford, Vamsee K. Pamula
  • Publication number: 20100194408
    Abstract: A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
    Type: Application
    Filed: February 15, 2008
    Publication date: August 5, 2010
    Applicant: ADVANCED LIQUID LOGIC, INC.
    Inventors: Ryan A. Sturmer, Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan, Philip Y. Paik
  • Publication number: 20080281471
    Abstract: A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.
    Type: Application
    Filed: August 14, 2007
    Publication date: November 13, 2008
    Inventors: Gregory F. Smith, Ryan A. Sturmer, Philip Y. Paik, Vijay Srinivasan, Michael G. Pollack, Vamsee K. Pamula, Keith R. Brafford, Richard M. West
  • Publication number: 20080006535
    Abstract: Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator.
    Type: Application
    Filed: August 14, 2007
    Publication date: January 10, 2008
    Inventors: Philip Paik, Michael Pollack, Ryan Sturmer, Gregory Smith, Keith Brafford, Vamsee Pamula