Patents by Inventor Ryan C. Clarke

Ryan C. Clarke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9245649
    Abstract: A nonvolatile sample and hold circuit can include a resistive switching circuit, a sample circuit, a reset circuit, and a converter circuit. The resistive switching circuit can be operable to accept an input voltage Vg, and provide a resistance response Rrs that corresponds to the input signal Vg. The sampling circuit can be operable to sample an input signal such as an input voltage Vin, to provide a sampled voltage Vg. The reset circuit can be operable to reset the resistive switching circuit to a high resistance state. The converter circuit can be operable to convert the resistive switching circuit to an output voltage. The novel sample and hold circuit can have no issues related to charge injection, no settling time and instantaneous sampling time, together with potentially infinite hold time.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: January 26, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Federico Nardi, Ryan C. Clarke, Yun Wang
  • Patent number: 9178148
    Abstract: Provided are resistive random access memory (ReRAM) cells, each having three or more resistive states and being capable of storing multiple bits of data, as well as methods of fabricating and operating such ReRAM cells. Such ReRAM cells or, more specifically, their resistive switching layer have wide range of resistive states and are capable of being very conductive (e.g., about 1 kOhm) in one state and very resistive (e.g., about 1 MOhm) in another state. In some embodiments, a resistance ratio between resistive states may be between 10 and 1,000 even up to 10,000. The resistive switching layers also allow establishing stable and distinct intermediate resistive states that may be assigned different data values. These layers may be configured to switching between their resistive states using fewer programming pulses than conventional systems by using specific materials, switching pluses, and resistive state threshold.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: November 3, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Imran Hashim, Ryan C. Clarke, Nan Lu, Tim Minvielle, Takeshi Yamaguchi
  • Patent number: 9178000
    Abstract: Provided are resistive random access memory (ReRAM) cells having extended conductive layers operable as electrodes of other devices, and methods of fabricating such cells and other devices. A conductive layer of a ReRAM cell extends beyond the cell boundary defined by the variable resistance layer. The extended portion may be used a source or drain region of a FET that may control an electrical current through the cell or other devices. The extended conductive layer may be also operable as electrode of another resistive-switching cell or a different device. The extended conductive layer may be formed from doped silicon. The variable resistance layer of the ReRAM cell may be positioned on the same level as a gate dielectric layer of the FET. The variable resistance layer and the gate dielectric layer may have the same thickness and share common materials, though they may be differently doped.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: November 3, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Federico Nardi, Ryan C. Clarke, Tim Minvielle, Yun Wang
  • Publication number: 20150311257
    Abstract: Provided are resistive random access memory (ReRAM) cells having extended conductive layers operable as electrodes of other devices, and methods of fabricating such cells and other devices. A conductive layer of a ReRAM cell extends beyond the cell boundary defined by the variable resistance layer. The extended portion may be used a source or drain region of a FET that may control an electrical current through the cell or other devices. The extended conductive layer may be also operable as electrode of another resistive-switching cell or a different device. The extended conductive layer may be formed from doped silicon. The variable resistance layer of the ReRAM cell may be positioned on the same level as a gate dielectric layer of the FET. The variable resistance layer and the gate dielectric layer may have the same thickness and share common materials, though they may be differently doped.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 29, 2015
    Applicants: Intermolecular Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Federico Nardi, Ryan C. Clarke, Tim Minvielle, Yun Wang
  • Publication number: 20150171323
    Abstract: Provided are resistive random access memory (ReRAM) cells, each having three or more resistive states and being capable of storing multiple bits of data, as well as methods of fabricating and operating such ReRAM cells. Such ReRAM cells or, more specifically, their resistive switching layer have wide range of resistive states and are capable of being very conductive (e.g., about 1 kOhm) in one state and very resistive (e.g., about 1 MOhm) in another state. In some embodiments, a resistance ratio between resistive states may be between 10 and 1,000 even up to 10,000. The resistive switching layers also allow establishing stable and distinct intermediate resistive states that may be assigned different data values. These layers may be configured to switching between their resistive states using fewer programming pulses than conventional systems by using specific materials, switching pluses, and resistive state threshold.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 18, 2015
    Inventors: Imran Hashim, Ryan C. Clarke, Nan Lu, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20150170760
    Abstract: A nonvolatile sample and hold circuit can include a resistive switching circuit, a sample circuit, a reset circuit, and a converter circuit. The resistive switching circuit can be operable to accept an input voltage Vg, and provide a resistance response Rrs that corresponds to the input signal Vg. The sampling circuit can be operable to sample an input signal such as an input voltage Vin, to provide a sampled voltage Vg. The reset circuit can be operable to reset the resistive switching circuit to a high resistance state. The converter circuit can be operable to convert the resistive switching circuit to an output voltage. The novel sample and hold circuit can have no issues related to charge injection, no settling time and instantaneous sampling time, together with potentially infinite hold time.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Applicant: Intermolecuarl Inc.
    Inventors: Federico Nardi, Ryan C. Clarke, Yun Wang
  • Patent number: 9001554
    Abstract: Provided are resistive random access memory (ReRAM) cells, each having three or more resistive states and being capable of storing multiple bits of data, as well as methods of fabricating and operating such ReRAM cells. Such ReRAM cells or, more specifically, their resistive switching layer have wide range of resistive states and are capable of being very conductive (e.g., about 1 kOhm) in one state and very resistive (e.g., about 1 MOhm) in another state. In some embodiments, a resistance ratio between resistive states may be between 10 and 1,000 even up to 10,000. The resistive switching layers also allow establishing stable and distinct intermediate resistive states that may be assigned different data values. These layers may be configured to switching between their resistive states using fewer programming pulses than conventional systems by using specific materials, switching pluses, and resistive state threshold.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: April 7, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Imran Hashim, Ryan C. Clarke, Nan Lu, Tim Minvielle, Takeshi Yamaguchi
  • Publication number: 20140192585
    Abstract: Provided are resistive random access memory (ReRAM) cells, each having three or more resistive states and being capable of storing multiple bits of data, as well as methods of fabricating and operating such ReRAM cells. Such ReRAM cells or, more specifically, their resistive switching layer have wide range of resistive states and are capable of being very conductive (e.g., about 1 kOhm) in one state and very resistive (e.g., about 1 MOhm) in another state. In some embodiments, a resistance ratio between resistive states may be between 10 and 1,000 even up to 10,000. The resistive switching layers also allow establishing stable and distinct intermediate resistive states that may be assigned different data values. These layers may be configured to switching between their resistive states using fewer programming pulses than conventional systems by using specific materials, switching pluses, and resistive state threshold.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Applicants: INTERMOLECULAR INC., SANDISK 3D LLC, KABUSHIKI KAISHA TOSHIBA
    Inventors: Imran Hashim, Ryan C. Clarke, Nan Lu, Tim Minvielle, Takeshi Yamaguchi