Patents by Inventor Ryan C. Shirk

Ryan C. Shirk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220197024
    Abstract: An optical system includes a reflective polarizer (20), and a display (10), first mirror (30a), and second mirror (30b) disposed on a same side of the reflective polarizer (20). The reflective polarizer (20) transmits an image emitted by the display (10) after the image is reflected by the first and second mirrors (30a, 30b). A mid-plane defined by intersection points between an optical axis of the system and the display (10), reflective polarizer (20), and second mirror (30b) has one-pass through four-pass regions having respective areas, A1 through A4.
    Type: Application
    Filed: June 6, 2019
    Publication date: June 23, 2022
    Inventors: Zhisheng Yun, Stephen J. Willett, Craig R. Schardt, Gilles J. Benoit, Keith M. Kotchick, Ryan C. Shirk, David A. Rosen, Hao Wu
  • Patent number: 11040721
    Abstract: Methods for management of a powertrain system in a vehicle. The methods receive data or signals from multiple sensors associated with the vehicle. Optimum thresholds for classifications of the sensor data can be changed based injecting signals into the powertrain system and receiving responsive signals. Expected priorities for the sensor signals can be altered based upon attributes of the signals and confirming actual priorities for the signals. Look-up tables for engine management can be modified based upon injecting signals into the powertrain system and measuring a utility of the responsive signals. The methods can thus dynamically alter and modify data for powertrain management, such as look-up tables, during vehicle operation under a wide range of conditions.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: June 22, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Gilles J. Benoit, Brian E. Brooks, Ryan C. Shirk, Michael E. Nelson, Craig R. Schardt
  • Publication number: 20210070313
    Abstract: Methods for management of a powertrain system in a vehicle. The methods receive data or signals from multiple sensors associated with the vehicle. Optimum thresholds for classifications of the sensor data can be changed based injecting signals into the powertrain system and receiving responsive signals. Expected priorities for the sensor signals can be altered based upon attributes of the signals and confirming actual priorities for the signals. Look-up tables for engine management can be modified based upon injecting signals into the powertrain system and measuring a utility of the responsive signals. The methods can thus dynamically alter and modify data for powertrain management, such as look-up tables, during vehicle operation under a wide range of conditions.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 11, 2021
    Inventors: Gilles J. Benoit, Brian E. Brooks, Ryan C. Shirk, Michael E. Nelson, Craig R. Schardt
  • Publication number: 20200368690
    Abstract: A separation membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., a first liquid) from a mixture comprising the first fluid (e.g., first liquid) and a second fluid (e.g., second liquid), wherein the separation membrane includes a polymeric ionomer that has a highly fluorinated backbone and recurring pendant groups according to the following formula (Formula I): —O—Rf—[—SO2—N?(Z+)—SO2—R—]m—[SO2]n-Q wherein: Rf is a perfluorinated organic linking group; R is an organic linking group; Z+ is H+, a monovalent cation, or a multivalent cation; Q is H, F, —NH, —O-2 Y+, or —CxF2x+1; Y+ is H+, a monovalent cation, or a multivalent cation; x=1 to 4; m=0 to 6; and n=0 or 1; with the proviso that at least one of m or n must be non-zero.
    Type: Application
    Filed: August 14, 2018
    Publication date: November 26, 2020
    Inventors: Michael A. Yandrasits, David Scott Seitz, Eric F. Funkenbusch, Ryan C. Shirk, Jinsheng Zhou, Eric J. Hanson, Moses M. David, Kazuhiko Mizuno
  • Patent number: 10766004
    Abstract: A composite membrane for selectively pervaporating a first liquid from a mixture comprising the first liquid and a second liquid. The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A pore-filling polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate. The polymer is more permeable to the first liquid than the second liquid but not soluble in the first liquid or the second liquid. The composite membrane may be asymmetric or symmetric with respect to the amount of pore-filling polymer throughout the thickness of the porous substrate.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: September 8, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jinsheng Zhou, Ryan C. Shirk, David Scott Seitz
  • Publication number: 20200164319
    Abstract: A composite membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., first liquid such as a high octane compound) from a mixture comprising the first fluid (e.g., first liquid such as a high octane compound) and a second fluid (e.g., second liquid such as gasoline). The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A pore-filling polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate. The composite membrane further includes at least one of: (a) an ionic liquid mixed with the pore-filling polymer; or (b) an amorphous fluorochemical film disposed on the composite membrane.
    Type: Application
    Filed: August 14, 2018
    Publication date: May 28, 2020
    Inventors: Jinsheng Zhou, Ryan C. Shirk, David Scott Seitz, Moses M. David
  • Patent number: 10618008
    Abstract: A separation membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., a first liquid) from a mixture comprising the first fluid (e.g., first liquid) and a second fluid (e.g., second liquid), wherein the separation membrane includes a polymeric ionomer that has a highly fluorinated backbone and recurring pendant groups according to the following formula (Formula I): —O—Rf—[—SO2—N?(Z+)—SO2—R—]m—[SO2]n-Q wherein: Rf is a perfluorinated organic linking group; R is an organic linking group; Z+ is H+, a monovalent cation, or a multivalent cation; Q is H, F, —NH2, —NH2, —O?Y+, or —CxF2x+1; Y+ is H+, a monovalent cation, or a multivalent cation; x=1 to 4; m=0 to 6; and n=0 or 1; with the proviso that at least one of morn must be non-zero.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: April 14, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael A. Yandrasits, David S. Seitz, Eric F. Funkenbusch, Ryan C. Shirk, Jinsheng Zhou, Eric J. Hanson, Moses M. David, Kazuhiko Mizuno
  • Patent number: 10590899
    Abstract: Nozzles and method of making the same are disclosed. The disclosed nozzles have at least one nozzle through-hole therein, wherein the at least one nozzle through-hole exhibits a coefficient of discharge, CD, of greater than about 0.50. Fuel injectors containing the nozzle are also disclosed. Methods of making and using nozzles and fuel injectors are further disclosed.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: March 17, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Scott M. Schnobrich, Barry S. Carpenter, Barbara A. Fipp, James C. Novack, David H. Redinger, Ryan C. Shirk
  • Publication number: 20200030748
    Abstract: A composite membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., first liquid) from a mixture comprising the first fluid (e.g., first liquid) and a second fluid (e.g., second liquid). The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A pore-filling polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate. The composite membrane further includes at least one of: (a) an ionic liquid mixed with the pore-filling polymer; or (b) an amorphous fluorochemical film disposed on the composite membrane.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Jinsheng Zhou, Ryan C. Shirk, David Scott Seitz, Moses M. David
  • Patent number: 10478778
    Abstract: A composite membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., first liquid such as a high octane compound) from a mixture comprising the first fluid (e.g., first liquid such as a high octane compound) and a second fluid (e.g., second liquid such as gasoline). The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A pore-filling polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate. The composite membrane further includes at least one of: (a) an ionic liquid mixed with the pore-filling polymer; or (b) an amorphous fluorochemical film disposed on the composite membrane.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: November 19, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Jinsheng Zhou, Ryan C. Shirk, David Scott Seitz, Moses M. David
  • Publication number: 20180363613
    Abstract: Nozzle and a method of making the same are disclosed. The method includes forming a material into a nozzle forming microstructured pattern comprising a plurality of nozzle hole forming features and planar control cavity forming features; forming at least one different material into a nozzle pre-form using the nozzle forming microstructured pattern, with the nozzle pre-form comprising a plurality of nozzle pre-form holes and sacrificial planar control cavities; and forming a nozzle from the nozzle pre-form, said forming the nozzle comprising removing enough of the at least one different material to remove the sacrificial planar control cavities so as to form a top surface of the nozzle pre-form into a top surface of the nozzle, and to form each of the nozzle pre-form holes into a nozzle through hole.
    Type: Application
    Filed: August 13, 2018
    Publication date: December 20, 2018
    Inventors: Barry S. Carpenter, Ryan C. Shirk, Robert J. DeVoe, James C. Novack
  • Patent number: 10054094
    Abstract: Nozzle and a method of making the same are disclosed.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: August 21, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Barry S. Carpenter, Ryan C. Shirk, Robert J. DeVoe, James C. Novack
  • Publication number: 20180229186
    Abstract: A separation membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., a first liquid) from a mixture comprising the first fluid (e.g., first liquid) and a second fluid (e.g.
    Type: Application
    Filed: July 1, 2016
    Publication date: August 16, 2018
    Inventors: Michael A. Yandrasits, David S. Seitz, Eric F. Funkenbusch, Ryan C. Shirk, Jinsheng Zhou, Eric J. Hanson, Moses M. David, Kazuhiko Mizuno
  • Publication number: 20180154311
    Abstract: A composite membrane for selectively separating (e.g., pervaporating) a first fluid (e.g., first liquid such as a high octane compound) from a mixture comprising the first fluid (e.g., first liquid such as a high octane compound) and a second fluid (e.g., second liquid such as gasoline). The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A pore-filling polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate. The composite membrane further includes at least one of: (a) an ionic liquid mixed with the pore-filling polymer; or (b) an amorphous fluorochemical film disposed on the composite membrane.
    Type: Application
    Filed: July 1, 2016
    Publication date: June 7, 2018
    Inventors: Jinsheng Zhou, Ryan C. Shirk, David Scott Seitz, Moses M. David
  • Publication number: 20170292445
    Abstract: A component of an internal combustion engine with anti-fouling (e.g., anti-coking) properties, said component comprising a metal surface; a plasma deposition formed layer comprising silicon, oxygen, and hydrogen on at least a portion of said metal surface; and an anti-fouling coating, of an at least partially fluorinated composition comprising at least one silane group, on at least a portion of a surface of said layer.
    Type: Application
    Filed: September 22, 2015
    Publication date: October 12, 2017
    Inventors: Michael E. Nelson, Moses M. David, Ryan C. Shirk
  • Publication number: 20170291143
    Abstract: A separation module including at least one separation leaf that includes two porous composite membranes and a permeate mesh spacer sandwiched therebetween with and an edge-seal bond that adheres the membranes and spacer together.
    Type: Application
    Filed: September 24, 2015
    Publication date: October 12, 2017
    Inventors: Jinsheng Zhou, Ryan C. Shirk, Kazuhiko Mizuno, David S. Seitz
  • Publication number: 20160325229
    Abstract: A composite membrane for selectively pervaporating a first liquid from a mixture comprising the first liquid and a second liquid. The composite membrane includes a porous substrate comprising opposite first and second major surfaces, and a plurality of pores. A pore-filling polymer is disposed in at least some of the pores so as to form a layer having a thickness within the porous substrate. The polymer is more permeable to the first liquid than the second liquid but not soluble in the first liquid or the second liquid. The composite membrane may be asymmetric or symmetric with respect to the amount of pore-filling polymer throughout the thickness of the porous substrate.
    Type: Application
    Filed: December 24, 2014
    Publication date: November 10, 2016
    Inventors: Jinsheng Zhou, Ryan C. Shirk, David Scott Seitz
  • Publication number: 20150328686
    Abstract: Methods of making fuel nozzles are described. More specifically, methods of making fuel nozzles including injection molding are described. The injection molding may include polymer injection molding, powder injection molding, or micro powder injection molding, including micro metal injection molding. The formation of microstructures in the described methods may use the selective exposure of a material capable of undergoing a multiphoton reaction.
    Type: Application
    Filed: December 19, 2013
    Publication date: November 19, 2015
    Inventors: Paul A. Martinson, Barry S. Carpenter, David H. Redinger, Scott M. Schnobrich, Ryan C. Shirk
  • Publication number: 20150219051
    Abstract: Nozzles and method of making the same are disclosed. The disclosed nozzles have an inlet face and a three-dimensional outlet face opposite the inlet face. The nozzles may have one or more nozzle through-holes extending from the inlet face to the outlet face. Fuel injectors containing the nozzle are also disclosed. Methods of making and using nozzles and fuel injectors are further disclosed.
    Type: Application
    Filed: August 1, 2013
    Publication date: August 6, 2015
    Inventors: Barry S. Carpenter, David H. Redinger, Scott M. Schnobrich, Ryan C. Shirk
  • Publication number: 20150211462
    Abstract: Nozzles and method of making the same are disclosed. The disclosed nozzles have at least one nozzle through-hole therein, wherein the at least one nozzle through-hole has (i) a single inlet opening along an inlet face and multiple outlet openings along an outlet face or (ii) multiple inlet openings along an inlet face and a single outlet opening along an outlet face. Fuel injectors containing the nozzle are also disclosed. Methods of making and using nozzles and fuel injectors are further disclosed.
    Type: Application
    Filed: August 1, 2013
    Publication date: July 30, 2015
    Inventors: Scott M. Schnobrich, Barry S. Carpenter, Barbara A. Fipp, James C. Novack, David H. Redinger, Ryan C. Shirk