Patents by Inventor Ryan Cameron

Ryan Cameron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384301
    Abstract: Methods for plasmonic nanoparticle assisted detection of target analytes are provided including methods of plasmonic nanoparticle assisted enzyme-linked immunosorbent assay (ELISA) in a fluidics device. For example, a digital microfluidics (DMF) system is provided that includes a DMF device (or cartridge) in which the methods of plasmonic nanoparticle assisted ELISA may be performed. The disclosed methods for detecting target analytes include measuring an optically detectable change caused by one or a combination of etching, growth, aggregation, or altered interparticle distance of plasmonic particles in the vicinity of a target analyte-capture biomolecule complex in response to a product or byproduct generated by enzyme-substrate reactions. In the methods, the amount of enzyme-substrate reactions is proportional to the number of target analytes bound to the capture biomolecules.
    Type: Application
    Filed: October 22, 2021
    Publication date: November 30, 2023
    Inventors: Harish KRISHNAKUMAR, Valentina TAIAKINA, Ryan Cameron DENOMME, Juewen LIU, Zhicheng HUANG
  • Publication number: 20230330656
    Abstract: A pipette dispenser vision system and method are disclosed. For example, a pipette dispenser vision system is provided for tracking pipettes with respect to dispensing liquid into target fluid wells, vessels, and/or reservoirs. The presently disclosed pipette dispenser vision system may include, for example, a computing device, a red/green/blue (RGB) imaging device, an infrared (IR) imaging device, an IR illumination source, and an IR sensor; all arranged with respect to, for example, a single-channel and/or a multi-channel pipette for dispensing liquid into a dispensing platform. Further, a method of using the presently disclosed pipette dispenser vision system is provided. For example, the method processes image data from the RGB imaging device and/or the IR imaging device to monitor/verify certain operations of the pipetting process and/or dispensing platform.
    Type: Application
    Filed: September 7, 2021
    Publication date: October 19, 2023
    Inventors: Ryan Cameron DENOMME, Krishna IYER, Patrick STERLINA, Gordon H. HALL, Arjun SUDARSAN
  • Patent number: 11768594
    Abstract: A method of updating a protocol for a Virtual Reality (VR) medical test via a user device having a processor, the VR medical test being performed on a subject via a VR device worn by the subject, wherein the method is performed by the processor and the method comprises: displaying GUI elements associated with the protocol on the user device, the GUI elements having user adjustable settings for modifying a functioning of the VR medical test; receiving a selection input from the user device corresponding to a selection of the GUI elements; receiving a setting input from the user device that corresponds to the selected GUI elements; modifying the user adjustable setting for each of the selected GUI elements according to the corresponding setting input; and updating the protocol based on the user adjustable setting for each of the selected GUI elements and operations associated with the VR device.
    Type: Grant
    Filed: November 26, 2020
    Date of Patent: September 26, 2023
    Assignee: Electric Puppets Incorporated
    Inventor: Ryan Cameron
  • Publication number: 20230284731
    Abstract: An apparatus for charge-assisted release of a ski binding includes an explosive material, a battery, an electrical circuit, and a processor. The explosive material is mounted on or in a ski, a ski boot, and/or a ski binding. The apparatus also includes The electrical circuit extends from the explosive material to the battery, the electrical circuit including a switch having a connected state in which the battery and the explosive material are electrically connected through the switch and a disconnected state in which the battery and the explosive material are electrically disconnected. The processor is electrically coupled to the switch and configured to generate an output signal that transitions the switch from the disconnected state to the connected state in response to an input signal from one or more sensors.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 14, 2023
    Inventors: George Pantazelos, Joseph K. Lane, Michael Ryan Cameron
  • Publication number: 20230221310
    Abstract: Provided herein is a sensing apparatus comprising, at least one LSPR light source, at least one detector, and at least one sensor for LSPR detection of a target chemical. The sensor comprises a substantially transparent, porous membrane having nanoparticles immobilized on the surface of its pores, the nanoparticles being functionalized with one or more capture molecules. There is further provided a self-referencing sensor for distinguishing non-specific signals from analyte binding signals. The self-referencing sensor comprising one or more nanoparticles having at least two distinct LSPR signals.
    Type: Application
    Filed: January 31, 2023
    Publication date: July 13, 2023
    Inventors: Ryan Cameron DENOMME, John Alexander Gordon DICK, Sarah Ann LEBLANC
  • Patent number: 11696615
    Abstract: An apparatus for charge-assisted release of a ski binding includes an explosive material, a battery, an electrical circuit, and a processor. The explosive material is mounted on or in a ski, a ski boot, and/or a ski binding. The electrical circuit extends from the explosive material to the battery, the electrical circuit including a switch having a connected state in which the battery and the explosive material are electrically connected through the switch and a disconnected state in which the battery and the explosive material are electrically disconnected. The processor is electrically coupled to the switch and configured to generate an output signal that transitions the switch from the disconnected state to the connected state in response to an input signal from one or more sensors.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: July 11, 2023
    Assignee: Stop River Development LLC
    Inventors: George Pantazelos, Joseph K. Lane, Michael Ryan Cameron
  • Patent number: 11626922
    Abstract: Systems and methods for rebroadcasting a target signal stream. A system includes a donor antenna circuit; a processor coupled to the donor antenna circuit. The processor may be configured to: receive a signal representing a request for rebroadcasting a target signal stream to a local region, the target signal stream associated with prioritization of a first signal type relative to at least one co-existing signal type; determining a target position to orient the donor antenna circuit relative to a target source providing the target signal stream, the target position based on a positioning model defined by a set of feature scores corresponding to one or more signal metrics, wherein the target position is determined based on an optimized combination of feature scores for a subset of signal metrics associated with prioritizing the first signal type; and transmitting a signal to orient the donor antenna circuit relative to the target source.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: April 11, 2023
    Assignee: DATADRILL COMMUNICATIONS INC.
    Inventors: Dario Facca, Paul Kennedy, Bryan Cockwell, Kevin Ryan, Curtis Korchynski, Ryan Cameron, Edwin Sayson
  • Patent number: 11598771
    Abstract: Provided herein is a sensing apparatus comprising, at least one LSPR light source, at least one detector, and at least one sensor for LSPR detection of a target chemical. The sensor comprises a substantially transparent, porous membrane having nanoparticles immobilized on the surface of its pores, the nanoparticles being functionalized with one or more capture molecules. There is further provided a self-referencing sensor for distinguishing non-specific signals from analyte binding signals. The self-referencing sensor comprising one or more nanoparticles having at least two distinct LSPR signals.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: March 7, 2023
    Assignee: Nicoya Lifesciences, Inc.
    Inventors: Ryan Cameron Denomme, John Alexander Gordon Dick, Sarah Ann Leblanc
  • Patent number: 11596855
    Abstract: Some aspects include a ski binding system using controllable electromagnets, alone or in combination with permanent magnets, as means of attaching or releasing a ski boot to a ski during use. Some aspects include a ski binding system using a controllable solenoid. In some aspects, microprocessor-based control releases binding electronically based on input from sensors located in binding, ski and/or boot, as well as in other equipment or clothing connected to them or to skier, or binding releases when a mechanical threshold is overcome. In some aspects, sensor data are recorded for analysis of system performance and for adjustment and improvement of system parameters based on data analytics.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: March 7, 2023
    Assignee: Stop River Development LLC
    Inventors: George Pantazelos, Joseph K. Lane, Michael Ryan Cameron
  • Publication number: 20230017547
    Abstract: A cartridge for use with an instrument to perform measurement of a fluid, including a digital microfluidics substrate comprising a plurality of electrowetting electrodes operative to perform droplet operations on a liquid droplet in a droplet operations gap; a top plate separated from the digital microfluidics substrate to form a droplet operations gap and comprising openings for injecting liquids into the droplet operations gap; a fiber assembly comprising a fiber optic probe projecting into the droplet operations gap and having a sensing end situated in proximity with one or more of the electrowetting electrodes.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 19, 2023
    Inventors: Krishna IYER, Gordon H. HALL, Champika SAMARASEKERA, Ryan Cameron DENOMME
  • Publication number: 20230004284
    Abstract: A method of updating a protocol for a Virtual Reality (VR) medical test via a user device having a processor, the VR medical test being performed on a subject via a VR device worn by the subject, wherein the method is performed by the processor and the method comprises: displaying GUI elements associated with the protocol on the user device, the GUI elements having user adjustable settings for modifying a functioning of the VR medical test; receiving a selection input from the user device corresponding to a selection of the GUI elements; receiving a setting input from the user device that corresponds to the selected GUI elements; modifying the user adjustable setting for each of the selected GUI elements according to the corresponding setting input; and updating the protocol based on the user adjustable setting for each of the selected GUI elements and operations associated with the VR device.
    Type: Application
    Filed: November 26, 2020
    Publication date: January 5, 2023
    Inventor: Ryan Cameron
  • Publication number: 20220085868
    Abstract: Systems and methods for rebroadcasting a target signal stream. A system includes a donor antenna circuit; a processor coupled to the donor antenna circuit. The processor may be configured to: receive a signal representing a request for rebroadcasting a target signal stream to a local region, the target signal stream associated with prioritization of a first signal type relative to at least one co-existing signal type; determining a target position to orient the donor antenna circuit relative to a target source providing the target signal stream, the target position based on a positioning model defined by a set of feature scores corresponding to one or more signal metrics, wherein the target position is determined based on an optimized combination of feature scores for a subset of signal metrics associated with prioritizing the first signal type; and transmitting a signal to orient the donor antenna circuit relative to the target source.
    Type: Application
    Filed: September 16, 2021
    Publication date: March 17, 2022
    Inventors: Dario FACCA, Paul KENNEDY, Bryan COCKWELL, Kevin RYAN, Curtis KORCHYNSKI, Ryan CAMERON, Edwin SAYSON
  • Publication number: 20210299548
    Abstract: Some aspects include a ski binding system using controllable electromagnets, alone or in combination with permanent magnets, as means of attaching or releasing a ski boot to a ski during use. Some aspects include a ski binding system using a controllable solenoid. In some aspects, microprocessor-based control releases binding electronically based on input from sensors located in binding, ski and/or boot, as well as in other equipment or clothing connected to them or to skier, or binding releases when a mechanical threshold is overcome. In some aspects, sensor data are recorded for analysis of system performance and for adjustment and improvement of system parameters based on data analytics.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: George Pantazelos, Joseph K. Lane, Michael Ryan Cameron
  • Patent number: 11110337
    Abstract: Some aspects include a ski binding system using controllable electromagnets, alone or in combination with permanent magnets, as means of attaching or releasing a ski boot to a ski during use. Some aspects include a ski binding system using a controllable solenoid. In some aspects, microprocessor-based control releases binding electronically based on input from sensors located in binding, ski and/or boot, as well as in other equipment or clothing connected to them or to skier, or binding releases when a mechanical threshold is overcome. In some aspects, sensor data are recorded for analysis of system performance and for adjustment and improvement of system parameters based on data analytics.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: September 7, 2021
    Assignee: Stop River Development LLC
    Inventors: George Pantazelos, Joseph K. Lane, Michael Ryan Cameron
  • Patent number: 11040267
    Abstract: Some aspects include a ski binding system using controllable electromagnets, alone or in combination with permanent magnets, as means of attaching or releasing a ski boot to a ski during use. Some aspects include a ski binding system using a controllable solenoid. In some aspects, microprocessor-based control releases binding electronically based on input from sensors located in binding, ski and/or boot, as well as in other equipment or clothing connected to them or to skier, or binding releases when a mechanical threshold is overcome. In some aspects, sensor data are recorded for analysis of system performance and for adjustment and improvement of system parameters based on data analytics.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 22, 2021
    Assignee: Stop River Development LLC
    Inventors: George Pantazelos, Joseph K. Lane, Michael Ryan Cameron
  • Publication number: 20210132055
    Abstract: Provided herein is a sensing apparatus comprising, at least one LSPR light source, at least one detector, and at least one sensor for LSPR detection of a target chemical. The sensor comprises a substantially transparent, porous membrane having nanoparticles immobilized on the surface of its pores, the nanoparticles being functionalized with one or more capture molecules. There is further provided a self-referencing sensor for distinguishing non-specific signals from analyte binding signals. The self-referencing sensor comprising one or more nanoparticles having at least two distinct LSPR signals.
    Type: Application
    Filed: October 5, 2020
    Publication date: May 6, 2021
    Inventors: Ryan Cameron DENOMME, John Alexander Gordon DICK, Sarah Ann LEBLANC
  • Publication number: 20210068760
    Abstract: Sleep systems having embedded sensors are described. In one aspect, a sleep system includes a mattress and one or more force sensors embedded within the mattress. The force sensors are positioned within the mattress to sense movement of an occupant of the mattress. The sleep system also includes one or more processors coupled with the one or more force sensors. At least one of the processors is configured to determine sleep state information for the occupant based on data obtained from one or more of the force sensors.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 11, 2021
    Applicant: Blue Ocean Laboratories, Inc.
    Inventors: Ronald Stuart BENSON, Ryan Cameron DENOMME
  • Patent number: 10874350
    Abstract: Sleep systems having embedded sensors are described. In one aspect, a sleep system includes a mattress and one or more force sensors embedded within the mattress. The force sensors are positioned within the mattress to sense movement of an occupant of the mattress. The sleep system also includes one or more processors coupled with the one or more force sensors. At least one of the processors is configured to determine sleep state information for the occupant based on data obtained from one or more of the force sensors.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: December 29, 2020
    Assignee: Blue Ocean Laboratories, Inc.
    Inventors: Ronald Stuart Benson, Ryan Cameron Denomme
  • Patent number: 10794904
    Abstract: Provided herein is a sensing apparatus comprising, at least one LSPR light source, at least one detector, and at least one sensor for LSPR detection of a target chemical. The sensor comprises a substantially transparent, porous membrane having nanoparticles immobilized on the surface of its pores, the nanoparticles being functionalized with one or more capture molecules. There is further provided a self-referencing sensor for distinguishing non-specific signals from analyte binding signals. The self-referencing sensor comprising one or more nanoparticles having at least two distinct LSPR signals.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: October 6, 2020
    Assignee: Nicoya Lifesciences Inc.
    Inventors: Ryan Cameron Denomme, John Alexander Gordon Dick, Sarah Ann Leblanc
  • Publication number: 20200268095
    Abstract: An apparatus for charge-assisted release of a ski binding includes an explosive material, a battery, an electrical circuit, and a processor. The explosive material is mounted on or in a ski, a ski boot, and/or a ski binding. The apparatus also includes The electrical circuit extends from the explosive material to the battery, the electrical circuit including a switch having a connected state in which the battery and the explosive material are electrically connected through the switch and a disconnected state in which the battery and the explosive material are electrically disconnected. The processor is electrically coupled to the switch and configured to generate an output signal that transitions the switch from the disconnected state to the connected state in response to an input signal from one or more sensors.
    Type: Application
    Filed: February 25, 2020
    Publication date: August 27, 2020
    Inventors: George Pantazelos, Joseph K. Lane, Michael Ryan Cameron