Patents by Inventor Ryan Chia-Jen Chen

Ryan Chia-Jen Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230253263
    Abstract: An anchored cut-metal gate (CMG) plug, a semiconductor device including the anchored CMG plug and methods of forming the semiconductor device are disclosed herein. The method includes performing a series of etching processes to form a trench through a metal gate electrode, through an isolation region, and into a semiconductor substrate. The trench cuts-through and separates the metal gate electrode into a first metal gate and a second metal gate and forms a recess in the semiconductor substrate. Once the trench has been formed, a dielectric plug material is deposited into the trench to form a CMG plug that is anchored within the recess of the semiconductor substrate and separates the first and second metal gates. As such, the anchored CMG plug provides high levels of resistance to reduce leakage current within the semiconductor device during operation and allowing for improved V-trigger performance of the semiconductor device.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Yi-Chun Chen, Ya-Yi Tsai, I-Wei Yang, Ryan Chia-Jen Chen, Shu-Yuan Ku
  • Patent number: 11721588
    Abstract: The first and second fins extend upwardly from a semiconductor substrate. The shallow trench isolation structure laterally surrounds lower portions of the first and second fins. The first gate structure extends across an upper portion of the first fin. The second gate structure extends across an upper portion of the second fin. The first source/drain epitaxial structures are on the first fin and on opposite sides of the first gate structure. The second source/drain epitaxial structures are on the second fin and on opposite sides of the second gate structure. The separation plug interposes the first and second gate structures and extends along a lengthwise direction of the first fin. The isolation material cups an underside of a portion of the separation plug between one of the first source/drain epitaxial structures and one of the second source/drain epitaxial structures.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: August 8, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Chang Hung, Shu-Yuan Ku, I-Wei Yang, Yi-Hsuan Hsiao, Ming-Ching Chang, Ryan Chia-Jen Chen
  • Patent number: 11670552
    Abstract: A method includes forming a patterned etching mask, which includes a plurality of strips, and etching a semiconductor substrate underlying the patterned etching mask to form a first plurality of semiconductor fins and a second plurality of semiconductor fins. The patterned etching mask is used as an etching mask in the etching. The method further includes etching the second plurality of semiconductor fins without etching the first plurality of semiconductor fins. An isolation region is then formed, and the first plurality of semiconductor fins has top portions protruding higher than a top surface of the isolation region.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Chia Tai Lin, Chao-Cheng Chen
  • Patent number: 11652005
    Abstract: An anchored cut-metal gate (CMG) plug, a semiconductor device including the anchored CMG plug and methods of forming the semiconductor device are disclosed herein. The method includes performing a series of etching processes to form a trench through a metal gate electrode, through an isolation region, and into a semiconductor substrate. The trench cuts-through and separates the metal gate electrode into a first metal gate and a second metal gate and forms a recess in the semiconductor substrate. Once the trench has been formed, a dielectric plug material is deposited into the trench to form a CMG plug that is anchored within the recess of the semiconductor substrate and separates the first and second metal gates. As such, the anchored CMG plug provides high levels of resistance to reduce leakage current within the semiconductor device during operation and allowing for improved V-trigger performance of the semiconductor device.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Chun Chen, Ryan Chia-Jen Chen, Shu-Yuan Ku, Ya-Yi Tsai, I-Wei Yang
  • Patent number: 11637206
    Abstract: A semiconductor device and method of forming thereof includes a first fin and a second fin each extending from a substrate. A first gate segment is disposed over the first fin and a second gate segment is disposed over the second fin. An interlayer dielectric (ILD) layer is adjacent the first gate segment and the second gate segment. A cut region (e.g., opening or gap between first gate structure and the second gate structure) extends between the first and second gate segments. The cut region has a first portion has a first width and a second portion has a second width, the second width is greater than the first width. The second portion interposes the first and second gate segments and the first portion is defined within the ILD layer.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Wei Yang, Chih-Chang Hung, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Publication number: 20230105271
    Abstract: Metal gate cutting techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes receiving an integrated circuit (IC) device structure that includes a substrate, one or more fins disposed over the substrate, a plurality of gate structures disposed over the fins, a dielectric layer disposed between and adjacent to the gate structures, and a patterning layer disposed over the gate structures. The gate structures traverses the fins and includes first and second gate structures. The method further includes: forming an opening in the patterning layer to expose a portion of the first gate structure, a portion of the second gate structure, and a portion of the dielectric layer; and removing the exposed portion of the first gate structure, the exposed portion of the second gate structure, and the exposed portion of the dielectric layer.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Ya-Yi Tsai, Yi-Hsuan Hsiao, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Patent number: 11616061
    Abstract: A method includes providing a structure having a substrate, semiconductor fins, and an isolation structure between adjacent semiconductor fins; forming a first gate structure engaging the semiconductor fins; depositing an inter-layer dielectric layer over the semiconductor fins and the first gate structure; removing the first gate structure, resulting in a first trench; depositing a second gate structure into the first trench, wherein the second gate structure includes a dielectric layer and a conductive layer; forming one or more mask layers over the second gate structure; patterning the one or more mask layers to have an opening exposing a portion of the second gate structure between two adjacent semiconductor fins; and etching the second gate structure through the opening to produce a second trench having tapered sidewalls, wherein the second trench is wider at top than at bottom.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: March 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ya-Yi Tsai, Chun-Liang Lai, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Publication number: 20230061345
    Abstract: A semiconductor device includes a substrate; a first fin structure extending along a first lateral direction; a second fin structure extending along the first lateral direction; a first gate structure extending along a second lateral direction and straddles the first fin structure; a second gate structure extending along the second lateral direction and straddles the second fin structure. The semiconductor device further includes a dielectric cut structure that separates the first and second gate structures from each other. The dielectric cut structure extends into the substrate and comprises a first portion and a second portion. A width of the first portion along the second lateral direction increases with increasing depth into the substrate and a width of the second portion along the second lateral direction decreases with increasing depth into the substrate. The second portion is located below the first portion.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chun Chen, Jih-Jse Lin, Ryan Chia-Jen Chen
  • Publication number: 20230062257
    Abstract: A method includes fabricating a semiconductor device, wherein the method includes depositing a coating layer on a first region and a second region under a loading condition such that a height of the coating layer in the first region is greater than a height of the coating layer in the second region. The method also includes applying processing gas to the coating layer to remove an upper portion of the coating layer such that a height of the coating layer in the first region is a same as a height of the coating layer in the second region.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Hsuan Chen, Ming-Chia Tai, Yu-Hsien Lin, Shun-Hui Yang, Ryan Chia-Jen Chen
  • Publication number: 20230031993
    Abstract: A semiconductor structure and method for fabricating a semiconductor structure includes using two separate oxide layers to improve device reliability. A first oxide layer is formed adjacent a fin (e.g. a fin of a fin field-effect transistor (FinFET) device), a dummy gate is formed adjacent the first oxide layer, the dummy gate is removed, and a second oxide layer is then formed adjacent the first oxide layer. The use of the second oxide layer can improve device reliability by covering any damage that may be inflicted on the first oxide layer when the dummy gate is removed.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yuan-Sheng Huang, Ryan Chia-Jen Chen
  • Publication number: 20230027789
    Abstract: Improved gate structures, methods for forming the same, and semiconductor devices including the same are disclosed. In an embodiment, a semiconductor device includes a gate structure over a semiconductor substrate, the gate structure including a high-k dielectric layer; a gate electrode over the high-k dielectric layer; a conductive cap over and in contact with the high-k dielectric layer and the gate electrode, a top surface of the conductive cap being convex; and first gate spacers on opposite sides of the gate structure, the high-k dielectric layer and the conductive cap extending between opposite sidewalls of the first gate spacers.
    Type: Application
    Filed: April 27, 2022
    Publication date: January 26, 2023
    Inventors: Li-Wei Yin, Yun-Chen Wu, Tzu-Wen Pan, Jih-Sheng Yang, Yu-Hsien Lin, Ryan Chia-Jen Chen
  • Patent number: 11527443
    Abstract: Metal gate cutting techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes receiving an integrated circuit (IC) device structure that includes a substrate, one or more fins disposed over the substrate, a plurality of gate structures disposed over the fins, a dielectric layer disposed between and adjacent to the gate structures, and a patterning layer disposed over the gate structures. The gate structures traverses the fins and includes first and second gate structures. The method further includes: forming an opening in the patterning layer to expose a portion of the first gate structure, a portion of the second gate structure, and a portion of the dielectric layer; and removing the exposed portion of the first gate structure, the exposed portion of the second gate structure, and the exposed portion of the dielectric layer.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ya-Yi Tsai, Yi-Hsuan Hsiao, Shu-Yuan Ku, Ryan Chia-Jen Chen, Ming-Ching Chang
  • Publication number: 20220384616
    Abstract: A method of forming a semiconductor device includes etching a gate stack to form a trench extending into the gate stack, forming a dielectric layer on a sidewall of the gate stack, with the sidewall exposed to the trench, and etching the dielectric layer to remove a first portion of the dielectric layer at a bottom of the trench. A second portion of the dielectric layer on the sidewall of the gate stack remains after the dielectric layer is etched. After the first portion of the dielectric layer is removed, the second portion of the dielectric layer is removed to reveal the sidewall of the gate stack. The trench is filled with a dielectric region, which contacts the sidewall of the gate stack.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Shu-Uei Jang, Ya-Yi Tsai, Ryan Chia-Jen Chen, An Chyi Wei, Shu-Yuan Ku
  • Publication number: 20220384271
    Abstract: A method of forming a semiconductor device includes forming a first fin and a second fin protruding above a substrate; forming isolation regions on opposing sides of the first fin and the second fin; forming a metal gate over the first fin and over the second fin, the metal gate being surrounded by a first dielectric layer; and forming a recess in the metal gate between the first fin and the second fin, where the recess extends from an upper surface of the metal gate distal the substrate into the metal gate, where the recess has an upper portion distal the substrate and a lower portion between the upper portion and the substrate, where the upper portion has a first width, and the lower portion has a second width larger than the first width, the first width and the second width measured along a longitudinal direction of the metal gate.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Chih-Chang Hung, Chieh-Ning Feng, Chun-Liang Lai, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Publication number: 20220384269
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Patent number: 11508582
    Abstract: A method of forming a semiconductor device includes etching a gate stack to form a trench extending into the gate stack, forming a dielectric layer on a sidewall of the gate stack, with the sidewall exposed to the trench, and etching the dielectric layer to remove a first portion of the dielectric layer at a bottom of the trench. A second portion of the dielectric layer on the sidewall of the gate stack remains after the dielectric layer is etched. After the first portion of the dielectric layer is removed, the second portion of the dielectric layer is removed to reveal the sidewall of the gate stack. The trench is filled with a dielectric region, which contacts the sidewall of the gate stack.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Uei Jang, Ya-Yi Tsai, Ryan Chia-Jen Chen, An Chyi Wei, Shu-Yuan Ku
  • Patent number: 11502076
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20220359300
    Abstract: A semiconductor structure and method of manufacturing a semiconductor structure are provided. The method includes receiving a substrate with fin features; forming a first gate stack over the substrate, wherein the first gate stack comprise at least one void exposed from a surface of the first gate stack; forming a fill material in the at least one void; partially removing the fill material outside the at least one void, wherein a portion of the fill material is left in the at least one void; forming sidewall spacers besides the first gate stack; removing the first gate stack; and forming a second gate stack.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Inventors: YUAN-SHENG HUANG, RYAN CHIA-JEN CHEN
  • Patent number: 11495501
    Abstract: A method of forming a semiconductor device includes forming a first fin and a second fin protruding above a substrate; forming isolation regions on opposing sides of the first fin and the second fin; forming a metal gate over the first fin and over the second fin, the metal gate being surrounded by a first dielectric layer; and forming a recess in the metal gate between the first fin and the second fin, where the recess extends from an upper surface of the metal gate distal the substrate into the metal gate, where the recess has an upper portion distal the substrate and a lower portion between the upper portion and the substrate, where the upper portion has a first width, and the lower portion has a second width larger than the first width, the first width and the second width measured along a longitudinal direction of the metal gate.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: November 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang Hung, Chieh-Ning Feng, Chun-Liang Lai, Yih-Ann Lin, Ryan Chia-Jen Chen
  • Publication number: 20220320314
    Abstract: A method of making a semiconductor device includes depositing a TiN layer over a substrate. The method further includes doping a first portion of the TiN layer using an oxygen-containing plasma treatment. The method further includes doping a second portion of the TiN layer using a nitrogen-containing plasma treatment, wherein the second portion of the TiN layer directly contacts the first portion of the TiN layer. The method further includes forming a first metal gate electrode over the first portion of the TiN layer. The method further includes forming a second metal gate electrode over the second portion of the TiN layer, wherein the first metal gate electrode has a different work function from the second metal gate electrode, and the second metal gate electrode directly contacts the first metal gate electrode.
    Type: Application
    Filed: June 16, 2022
    Publication date: October 6, 2022
    Inventors: Ming ZHU, Hui-Wen LIN, Harry Hak-Lay CHUANG, Bao-Ru YOUNG, Yuan-Sheng HUANG, Ryan Chia-Jen CHEN, Chao-Cheng CHEN, Kuo-Cheng CHING, Ting-Hua HSIEH, Carlos H. DIAZ