Patents by Inventor Ryan Christopher THOMAS

Ryan Christopher THOMAS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10441527
    Abstract: A fluid composition comprises I) a first component and II) second component different from the first component I). The first component I) comprises at least one copolymer. The copolymer can include a cross-linked siloxane (e.g. a cross-linked aminosiloxane), a silicone polyether copolymer (e.g. an (AB)n silicone polyether copolymer), and/or a saccharide siloxane copolymer. The second component II) comprises an organopolysiloxane resin (e.g. an MQ resin) and/or an acrylate copolymer. The fluid composition can further comprise a carrier fluid, such as a silicone, an organic solvent, and/or an organic oil. The fluid composition may have a viscosity of at least 100 mPa·s at 23° C. and exhibit pituitous rheological properties (generally determined from a plot of normal force (in Pascals) vs a perpendicular shear rate in (sec?1)). Also disclosed is a personal care composition that comprises the fluid composition.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: October 15, 2019
    Assignee: Dow Silicones Corporation
    Inventors: Donald Kadlec, Zhi Li, Kimmai Thi Nguyen, Ryan Christopher Thomas, Jason A Vogel
  • Patent number: 10280265
    Abstract: A method can selectively prepare a compound of formula (IV), where each R1 and each R2 are independently selected from an alkyl group, an aryl group, a halogenated alkyl group, or a halogenated aryl group of 6 to 10 carbon atoms each R3 is an alkane-diyl group, and each R4 is hydrogen or an alkyl group. The method involves hydrosilylation of an organohydrogensiloxane oligomer with a carboxylic acid alkenyl ester using an iridium complex catalyst.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: May 7, 2019
    Assignee: Dow Corning Corporation
    Inventors: Donald Eldred, Matthew Jeletic, Ryan Christopher Thomas
  • Patent number: 10172781
    Abstract: A pituitous silicone fluid includes a hydrosilylation reaction product and a carrier fluid. The hydrosilylation reaction product is the reaction product of a first linear organopolysiloxane and a second linear organopolysiloxane. The first linear organopolysiloxane includes (R1R2R3SiO1/2) and (R4R5SiO2/2) units. Each of R1-R5 is independently a hydrocarbon group so long as at least one of R1-R5 is an alkenyl group. In addition, the first linear organopolysiloxane has a degree of polymerization of from 100 to 15,000. The second linear organopolysiloxane includes (R6R7R8SiO1/2) and (R9R10SiO2/2) units. Each of R6-R10 is independently a hydrocarbon group, polyether group, siloxane group, or polyol group, so long as at least one of R6-R10 is a hydrogen atom. In addition, the second linear organopolysiloxane has a degree of polymerization of from 4 to 1,000. The hydrosilylation reaction product includes alkenyl or Si—H functionality. Personal care compositions can include the pituitous silicone fluid.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: January 8, 2019
    Assignee: Dow Silicones Corporation
    Inventors: Patrick J. Fryfogle, Donald Anthony Kadlec, Kimmai Thi Nguyen, Ryan Christopher Thomas
  • Publication number: 20180244851
    Abstract: A method can selectively prepare a compound of formula (IV):, where each R1 and each R2 are independently selected from an alkyl group, an aryl group, a halogenated alkyl group, or a halogenated aryl group of 6 to 10 carbon atoms each R3 is an alkane-diyl group, and each R4 is hydrogen or an alkyl group. The method involves hydrosilylation of an organohydrogensiloxane oligomer with a carboxylic acid alkenyl ester using an iridium complex catalyst.
    Type: Application
    Filed: December 5, 2016
    Publication date: August 30, 2018
    Inventors: Donald Eldred, Matthew Jeletic, Ryan Christopher Thomas
  • Publication number: 20180078486
    Abstract: A fluid composition comprises I) a first component and II) second component different from the first component I). The first component I) comprises at least one copolymer. The copolymer can include a cross-linked siloxane (e.g. a cross-linked aminosiloxane), a silicone polyether copolymer (e.g. an (AB)n silicone polyether copolymer), and/or a saccharide siloxane copolymer. The second component II) comprises an organopolysiloxane resin (e.g. an MQ resin) and/or an acrylate copolymer. The fluid composition can further comprise a carrier fluid, such as a silicone, an organic solvent, and/or an organic oil. The fluid composition may have a viscosity of at least 100 mPa·s at 23° C. and exhibit pituitous rheological properties (generally determined from a plot of normal force (in Pascals) vs a perpendicular shear rate in (sec?1)). Also disclosed is a personal care composition that comprises the fluid composition.
    Type: Application
    Filed: April 4, 2016
    Publication date: March 22, 2018
    Inventors: Donald Kadlec, Zhi Li, Kimmai Thi Nguyen, Ryan Christopher Thomas, Jason A Vogel
  • Patent number: 9890253
    Abstract: A cross-linked aminosiloxane polymer includes a first siloxane backbone, a second siloxane backbone, and at least one intramolecular structure cross-linking a silicon atom of the first siloxane backbone and a silicon atom of the second siloxane backbone. The intramolecular structure has the chemical structure: (I) In Formula (I), X is chosen from the following groups; (II); (III); or (IV). In groups (II), (III), and (IV), each R is independently a C1-C10 hydrocarbon group. Each R1 is independently a C1-C10 hydrocarbon group. Each R2 is independently a hydrogen atom, OH, a C1-C12 hydrocarbon group, a phenyl group, R?(OR?)m, or R?OH. Each of R? and R? is independently an alkyl group and “m” is 1 to 3. Moreover, “a” is 0 or 1. The cross-linked aminosiloxane polymer can be formed by the method of this disclosure.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: February 13, 2018
    Assignee: Dow Corning Corporation
    Inventors: Qian Feng, Patrick J. Fryfogle, Bethany K. Johnson, Zhi Li, Kimmai Thi Nguyen, Ryan Christopher Thomas
  • Publication number: 20170360690
    Abstract: A pituitous silicone fluid includes a hydrosilylation reaction product and a carrier fluid. The hydrosilylation reaction product is the reaction product of a first linear organopolysiloxane and a second linear organopolysiloxane. The first linear organo-polysiloxane includes (R1R2R3SiO1/2) and (R4R5SiO2/2) units. Each of R1-R5 is independently a hydrocarbon group so long as at least one of R1-R5 is an alkenyl group. In addition, the first linear organopolysiloxane has a degree of polymerization of from 100 to 15,000. The second linear organopolysiloxane includes (R6R7R8SiO1/2) and (R9R10SiO2/2) units. Each of R6-R10 is independently a hydrocarbon group, polyether group, siloxane group, or polyol group, so long as at least one of R6-R10 is a hydrogen atom. In addition, the second linear organopolysiloxane has a degree of polymerization of from 4 to 1,000. The hydrosilylation reaction product includes alkenyl or Si—H functionality. Personal care compositions can include the pituitous silicone fluid.
    Type: Application
    Filed: April 8, 2015
    Publication date: December 21, 2017
    Inventors: Patrick J. FRYFOGLE, Donald Anthony KADLEC, Kimmai Thi NGUYEN, Ryan Christopher THOMAS
  • Publication number: 20170355824
    Abstract: A cross-linked aminosiloxane polymer includes a first siloxane backbone, a second siloxane backbone, and at least one intramolecular structure cross-linking a silicon atom of the first siloxane backbone and a silicon atom of the second siloxane backbone. The intramolecular structure has the chemical structure: (I) In Formula (I), X is chosen from the following groups; (II); (III); or (IV). In groups (II), (III), and (IV), each R is independently a C1-C10 hydrocarbon group. Each R1 is independently a C1-C10 hydrocarbon group. Each R2 is independently a hydrogen atom, OH, a C1-C12 hydrocarbon group, a phenyl group, R?(OR?)m, or R?OH. Each of R? and R? is independently an alkyl group and “m” is 1 to 3. Moreover, “a” is 0 or 1. The cross-linked aminosiloxane polymer can be formed by the method of this disclosure.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 14, 2017
    Inventors: Qian FENG, Patrick J. FRYFOGLE, Bethany K. JOHNSON, Zhi LI, Kimmai Thi NGUYEN, Ryan Christopher THOMAS
  • Publication number: 20170165190
    Abstract: A pituitous silicone fluid includes a hydrosilylation reaction product and a carrier fluid. The hydrosilylation reaction product is the reaction product of a first linear organopolysiloxane and a second linear organopolysiloxane. The first linear organo-polysiloxane includes (R1R2R3SiO1/2) and (R4R5SiO2/2) units. Each of R1-R5 is independently a hydrocarbon group so long as at least one of R1-R5 is an alkenyl group. In addition, the first linear organopolysiloxane has a degree of polymerization of from 100 to 15,000. The second linear organopolysiloxane includes (R6R7R8SiO1/2) and (R9R10SiO2/2) units. Each of R6-R10 is independently a hydrocarbon group, polyether group, siloxane group, or polyol group, so long as at least one of R6-R10 is a hydrogen atom. In addition, the second linear organopolysiloxane has a degree of polymerization of from 4 to 1,000. The hydrosilylation reaction product includes alkenyl or Si—H functionality. Personal care compositions can include the pituitous silicone fluid.
    Type: Application
    Filed: April 8, 2015
    Publication date: June 15, 2017
    Inventors: Patrick J. FRYFOGLE, Donald Anthony KADLEC, Kimmai Thi NGUYEN, Ryan Christopher THOMAS
  • Publication number: 20170096534
    Abstract: A cross-linked aminosiloxane polymer includes a first siloxane backbone, a second siloxane backbone, and at least one intramolecular structure cross-linking a silicon atom of the first siloxane backbone and a silicon atom of the second siloxane backbone. The intramolecular structure has the chemical structure: (I) In Formula (I), X is chosen from the following groups; (II); (III); or (IV). In groups (II), (III), and (IV), each R is independently a C1-C10 hydrocarbon group. Each R1 is independently a C1-C10 hydrocarbon group. Each R2 is independently a hydrogen atom, OH, a C1-C12 hydrocarbon group, a phenyl group, R?(OR?)m, or R?OH. Each of R? and R? is independently an alkyl group and “m” is 1 to 3. Moreover, “a” is 0 or 1. The cross-linked aminosiloxane polymer can be formed by the method of this disclosure.
    Type: Application
    Filed: May 20, 2015
    Publication date: April 6, 2017
    Inventors: Qian FENG, Patrick J. FRYFOGLE, Bethany K. JOHNSON, Zhi LI, Kimmai Thi NGUYEN, Ryan Christopher THOMAS