Patents by Inventor Ryan FOBEL

Ryan FOBEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220288592
    Abstract: Disclosed herein is a surfactant additive, ethylenediamine tetrakis(ethoxylate-block-propoxylate) tetrol with 16 ethylene oxide repeat units and 18 propylene oxide repeat units (known by its trade name as Tetronic 90R4) used as a droplet-additive, or to coat DMF driving electrode surfaces which dramatically improves the capability to work with high-protein-content liquids (e.g., whole blood) on digital microfluidic chips. This surfactant prevents protein adsorption and fouling of DMF electrode surfaces to an extent that was heretofore impossible. Specifically, this surfactant allows for the manipulation of droplets of undiluted whole blood for >1 hour per electrode (>1 50 times better than what is possible for any known additive). This improvement in handling high protein content media will revolutionize blood-based diagnostics on digital microfluidic platforms.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 15, 2022
    Inventors: RYAN FOBEL, ALPHONSUS HON-CHUNG NG, AARON RAY WHEELER, MAN HO STEPHEN HO
  • Patent number: 11292002
    Abstract: Disclosed herein is a surfactant additive, ethylenediamine tetrakis(ethoxylate-block-propoxylate) tetrol with 16 ethylene oxide repeat units and 18 propylene oxide repeat units (known by its trade name as Tetronic 90R4) used as a droplet-additive, or to coat DMF driving electrode surfaces which dramatically improves the capability to work with high-protein-content liquids (e.g., whole blood) on digital microfluidic chips. This surfactant prevents protein adsorption and fouling of DMF electrode surfaces to an extent that was heretofore impossible. Specifically, this surfactant allows for the manipulation of droplets of undiluted whole blood for >1 hour per electrode (>1 50 times better than what is possible for any known additive). This improvement in handling high protein content media will revolutionize blood-based diagnostics on digital microfluidic platforms.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: April 5, 2022
    Assignee: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Ryan Fobel, Alphonsus Hon-Chung Ng, Aaron Ray Wheeler, Man Ho Stephen Ho
  • Patent number: 10960398
    Abstract: The present disclosure discloses a multi-droplet sensing and actuation system, for use in a digital microfluidic chip operation wherein a linearly independent alternating current signal is applied to each discrete actuation electrode thus encoding the electrode's identity. The combined measured impedance signal from multiple channels is then processed to decode an impedance measurement for the volume between each discrete actuation electrode and its corresponding conductive counter electrode region, where the sensed impedance is inversely proportional to an amount of liquid within the volume.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: March 30, 2021
    Assignee: SCI-BOTS INC.
    Inventors: Ryan Fobel, Christian Fobel, Aaron R. Wheeler
  • Publication number: 20190374950
    Abstract: Disclosed herein is a surfactant additive, ethylenediamine tetrakis(ethoxylate-block-propoxylate) tetrol with 16 ethylene oxide repeat units and 18 propylene oxide repeat units (known by its trade name as Tetronic 90R4) used as a droplet-additive, or to coat DMF driving electrode surfaces which dramatically improves the capability to work with high-protein-content liquids (e.g., whole blood) on digital microfluidic chips. This surfactant prevents protein adsorption and fouling of DMF electrode surfaces to an extent that was heretofore impossible. Specifically, this surfactant allows for the manipulation of droplets of undiluted whole blood for >1 hour per electrode (>1 50 times better than what is possible for any known additive). This improvement in handling high protein content media will revolutionize blood-based diagnostics on digital microfluidic platforms.
    Type: Application
    Filed: March 31, 2017
    Publication date: December 12, 2019
    Inventors: RYAN FOBEL, ALPHONSUS HON-CHUNG NG, AARON RAY WHEELER, MAN HO STEPHEN HO
  • Publication number: 20190201902
    Abstract: The present disclosure discloses a multi-droplet sensing and actuation system, for use in a digital microfluidic chip operation wherein a linearly independent alternating current signal is applied to each discrete actuation electrode thus encoding the electrode's identity. The combined measured impedance signal from multiple channels is then processed to decode an impedance measurement for the volume between each discrete actuation electrode and its corresponding conductive counter electrode region, where the sensed impedance is inversely proportional to an amount of liquid within the volume.
    Type: Application
    Filed: August 17, 2017
    Publication date: July 4, 2019
    Applicant: SCI-BOTS Inc.
    Inventors: Ryan FOBEL, Christian FOBEL, Aaron R. WHEELER
  • Publication number: 20170184546
    Abstract: Embodiments of the present disclosure digital microfluidic arrays that may be fabricated by a printing method, whereby digital microfluidic electrodes arrays are printed, via a printing method such as inkjet printing, onto a suitable substrate. In some embodiments, a substrate and/or ink is prepared or modified to support the printing of electrode arrays, such as via changes to the surface energy. In some embodiments, porous and/or fibrous substrates are prepared by the addition of a barrier layer, or, for example, by the addition or infiltration of a suitable material to render the surface capable of supporting printed electrodes. Various example embodiments involving hybrid devices formed by the printing of digital microfluidic arrays onto a substrate having a hydrophilic layer are disclosed.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Ryan FOBEL, Andrea KIRBY, Aaron R. WHEELER
  • Patent number: 9594056
    Abstract: Embodiments of the present disclosure digital microfluidic arrays that may be fabricated by a printing method, whereby digital microfluidic electrodes arrays are printed, via a printing method such as inkjet printing, onto a suitable substrate. In some embodiments, a substrate and/or ink is prepared or modified to support the printing of electrode arrays, such as via changes to the surface energy. In some embodiments, porous and/or fibrous substrates are prepared by the addition of a barrier layer, or, for example, by the addition or infiltration of a suitable material to render the surface capable of supporting printed electrodes. Various example embodiments involving hybrid devices formed by the printing of digital microfluidic arrays onto a substrate having a hydrophilic layer are disclosed.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: March 14, 2017
    Assignee: The Governing Council of the University of Toronto
    Inventors: Ryan Fobel, Andrea Kirby, Aaron Wheeler
  • Publication number: 20150107998
    Abstract: Embodiments of the present disclosure digital microfluidic arrays that may be fabricated by a printing method, whereby digital microfluidic electrodes arrays are printed, via a printing method such as inkjet printing, onto a suitable substrate. In some embodiments, a substrate and/or ink is prepared or modified to support the printing of electrode arrays, such as via changes to the surface energy. In some embodiments, porous and/or fibrous substrates are prepared by the addition of a barrier layer, or, for example, by the addition or infiltration of a suitable material to render the surface capable of supporting printed electrodes. Various example embodiments involving hybrid devices formed by the printing of digital microfluidic arrays onto a substrate having a hydrophilic layer are disclosed.
    Type: Application
    Filed: February 27, 2014
    Publication date: April 23, 2015
    Applicant: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Ryan FOBEL, Andrea KIRBY, Aaron WHEELER