Patents by Inventor Ryan G. Coe

Ryan G. Coe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11703027
    Abstract: Systems and methods for a WEC controller that uses a self-tuning proportional-integral control law prescribing motor torques to maximize electrical power generation and automatically tune the controller to maximize power absorption. In an embodiment, the controller may be part of any resonant WEC system. The control law relies upon an identified model of device intrinsic impedance to generate a frequency-domain estimate of the wave-induced excitation force and measurements of device velocities. The control law was tested in irregular sea-states that evolved over hours (a rapid, but realistic time-scale) and that changed instantly (an unrealistic scenario to evaluate controller response).
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: July 18, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Giorgio Bacelli, David G. Wilson, Dominic Forbush, Steven J. Spencer, Ryan G. Coe
  • Patent number: 10415537
    Abstract: A parametric excitation dynamic model is used for a three degrees-of-freedom (3-DOF) wave energy converter. Since the heave motion is uncoupled from the pitch and surge modes, the pitch-surge equations of motion can be treated as a linear time varying system, or a linear system with parametric excitation. In such case the parametric exciting frequency can be tuned to twice the natural frequency of the system for higher energy harvesting. A parametric excited 3-DOF wave energy converter can harvest more power, for both regular and irregular waves, compared to the linear 3-DOF. For example, in a Bretschneider wave, the harvested energy in the three modes is about 3.8 times the energy harvested in the heave mode alone; while the same device produces about 3.1 times the heave mode energy when using a linear 3-DOF model.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: September 17, 2019
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, Michigan Technological University, South Dakota Board of Regents
    Inventors: Ossama Abdelkhalik, Rush D. Robinett, III, Shangyan Zou, David G. Wilson, Giorgio Bacelli, Umesh Korde, Ryan G. Coe
  • Patent number: 10344736
    Abstract: The invention provides optimal control of a three-degree-of-freedom wave energy converter using a pseudo-spectral control method. The three modes are the heave, pitch and surge. A dynamic model is characterized by a coupling between the pitch and surge modes, while the heave is decoupled. The heave, however, excites the pitch motion through nonlinear parametric excitation in the pitch mode. The invention can use a Fourier series as basis functions to approximate the states and the control. For the parametric excited case, a sequential quadratic programming approach can be implemented to numerically solve for the optimal control. The numerical results show that the harvested energy from three modes is greater than three times the harvested energy from the heave mode alone. Moreover, the harvested energy using a control that accounts for the parametric excitation is significantly higher than the energy harvested when neglecting this nonlinear parametric excitation term.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: July 9, 2019
    Assignees: National Technology & Engineering Solution of Sandia, LLC, Michigan Technological University
    Inventors: Ossama Abdelkhalik, Giorgio Bacelli, Shangyan Zou, Rush D. Robinett, III, David G. Wilson, Ryan G. Coe
  • Publication number: 20180163690
    Abstract: The invention provides optimal control of a three-degree-of-freedom wave energy converter using a pseudo-spectral control method. The three modes are the heave, pitch and surge. A dynamic model is characterized by a coupling between the pitch and surge modes, while the heave is decoupled. The heave, however, excites the pitch motion through nonlinear parametric excitation in the pitch mode. The invention can use a Fourier series as basis functions to approximate the states and the control. For the parametric excited case, a sequential quadratic programming approach can be implemented to numerically solve for the optimal control. The numerical results show that the harvested energy from three modes is greater than three times the harvested energy from the heave mode alone. Moreover, the harvested energy using a control that accounts for the parametric excitation is significantly higher than the energy harvested when neglecting this nonlinear parametric excitation term.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 14, 2018
    Inventors: Ossama Abdelkhalik, Giorgio Bacelli, Shangyan Zou, Rush D. Robinett, III, David G. Wilson, Ryan G. Coe
  • Publication number: 20180163691
    Abstract: A parametric excitation dynamic model is used for a three degrees-of-freedom (3-DOF) wave energy converter. Since the heave motion is uncoupled from the pitch and surge modes, the pitch-surge equations of motion can be treated as a linear time varying system, or a linear system with parametric excitation. In such case the parametric exciting frequency can be tuned to twice the natural frequency of the system for higher energy harvesting. A parametric excited 3-DOF wave energy converter can harvest more power, for both regular and irregular waves, compared to the linear 3-DOF. For example, in a Bretschneider wave, the harvested energy in the three modes is about 3.8 times the energy harvested in the heave mode alone; while the same device produces about 3.1 times the heave mode energy when using a linear 3-DOF model.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 14, 2018
    Inventors: Ossama Abdelkhalik, Rush D. Robinett, III, Shangyan Zou, David G. Wilson, Giorgio Bacelli, Umesh Korde, Ryan G. Coe