Patents by Inventor Ryan Haoyun Wu

Ryan Haoyun Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230160997
    Abstract: Described are method and systems that implement time frequency domain threshold interference and localization fusion to resolve interference issues in an automotive radar system, that produces spectrograms using Short-Time Fourier Transform (STFT) for all receiving antennas of the automotive radar system. For each STFT frequency a suppression threshold is determined. Interference is isolated for each STFT frequency by removing the interference from samples that are above the suppression threshold by using a filter. Direction of Arrival (DoA) is estimated for each interference spectrogram cell using measurements from all the receiving antennas. Interference samples are clustered using the DoA into epochs of chirps.
    Type: Application
    Filed: November 23, 2021
    Publication date: May 25, 2023
    Applicant: NXP B.V.
    Inventors: Ryan Haoyun Wu, Feike Guus Jansen, Michael Andreas Staudenmaier, Maik Brett
  • Patent number: 11644566
    Abstract: Embodiments are disclosed that for synthetic aperture radar (SAR) systems and methods that process radar image data to generate radar images using vector processor engines, such as single-instruction-multiple-data (SIMD) processor engines. The vector processor engines can be further augmented with accelerators that vectorize element selection thereby expediting memory accesses required for interpolation operations performed by the vector processor engines.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: May 9, 2023
    Assignee: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Jayakrishnan Cheriyath Mundarath, Sili Lu, Maik Brett
  • Publication number: 20230128469
    Abstract: A radar system, apparatus, architecture, and method are provided with a transmitter that produces a plurality of distinct FanTOM signals that are transmitted as N RF-encoded transmit signals in an overlapped fashion such that the pulse repetition interval and frame length are kept short; a receiver that processes target return signals reflected from the N RF-encoded transmit signals with a mixer to produce an IF signal which is filtered with one or more notch filters clocked with a sampling clock frequency to control harmonic notch frequencies to suppress transmitter spill-over and close-in self-clutter interference, thereby producing a filtered IF signal that is converted to a digital signal with an analog-to-digital converter that is clocked with the sampling clock frequency; and a radar processor that processes the digital signal to generate a range spectrum comprising N segments that correspond, respectively, to the N RF-encoded transmit signals.
    Type: Application
    Filed: October 1, 2021
    Publication date: April 27, 2023
    Applicant: NXP B.V.
    Inventors: Douglas Alan Garrity, Ryan Haoyun Wu, Maik Brett
  • Publication number: 20230095228
    Abstract: Aspects of the present disclosure are directed to radar and radar processing. As may be implemented in accordance with one or more embodiments involving multi-input multi-output (MIMO) co-prime radar signals transmitted by a plurality of transmitters and reflected from at least one target, the reflected radar signals are processed by resolving ambiguities associated with a range-Doppler detection based on unique pulse repetition frequencies (PRF)s associated with respective chirp groups of the reflected radar signals. Phase compensation is applied to compensate for motion-induced phased biases and, thereafter, Doppler estimates are reconstructed to provide a dealiased version of the reflected radar signals.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Satish Ravindran
  • Patent number: 11614531
    Abstract: A co-prime coded DDM MIMO radar system, apparatus, architecture, and method are provided with a reference signal generator (112) that produces a transmit reference signal; a plurality of DDM transmit modules (11) that produce, condition, and transmit a plurality of transmit signals over which each have a different co-prime encoded progressive phase offset from the transmit reference signal; a receiver module (12) that receives a target return signal reflected from the plurality of transmit signals by a target and generates a digital signal from the target return signal; and a radar control processing unit (20) configured to detect Doppler spectrum peaks in the digital signal, where the radar control processing unit comprises a Doppler disambiguation module (25) that is configured with a CPC decoder to associate each detected Doppler spectrum peak with a corresponding DDM transmit module, thereby generating a plurality of transmitter-associated Doppler spectrum peak detections.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: March 28, 2023
    Assignee: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Satish Ravindran
  • Patent number: 11605228
    Abstract: An early fusion network is provided that reduces network load and enables easier design of specialized ASIC edge processors through performing a portion of convolutional neural network layers at distributed edge and data-network processors prior to transmitting data to a centralized processor for fully-connected/deconvolutional neural networking processing. Embodiments can provide convolution and downsampling layer processing in association with the digital signal processors associated with edge sensors. Once the raw data is reduced to smaller feature maps through the convolution-downsampling process, this reduced data is transmitted to a central processor for further processing such as regression, classification, and segmentation, along with feature combination of the data from the sensors.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: March 14, 2023
    Assignee: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Satish Ravindran, Adam Fuks
  • Publication number: 20230053001
    Abstract: Aspects of the present disclosure are directed to radar signal processing apparatuses and methods. As may be implemented in accordance with one or more embodiments, digital signals representative of received reflections of radar signals transmitted towards a target are mathematically processed to provide or construct a matrix pencil based on or as a function of a forward-backward matrix. Eigenvalues of the matrix pencil are computed and an estimation of the direction of arrival (DoA) of the target is output based on the computed eigenvalues.
    Type: Application
    Filed: July 28, 2021
    Publication date: February 16, 2023
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Michael Andreas Staudenmaier, Maik Brett
  • Publication number: 20220390555
    Abstract: Aspects of the disclosure are directed to apparatuses, systems and methods for radar processing. As may be implemented in accordance with one or more aspects herein, an apparatus may include receiver circuitry to receive and sample radar signals reflected from a target, and processing circuitry to carry out the following. Representations of the reflections are transformed into the time-frequency domain where they are oversampled. The oversampled representations of the reflections are inversely transformed to provide resampled reflections. Positional characteristics of the target may then be ascertained by constructing a range response characterizing the target based on the resampled reflections.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 8, 2022
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Michael Andreas Staudenmaier, Maik Brett
  • Publication number: 20220349986
    Abstract: Aspects of the present disclosure are directed to implementations involving the transmission of radar signals and the processing of reflections of those signals as received from a target. As may be implemented with one or more embodiments, a spectrogram may be produced by converting reflections, of transmitted radar signals from a target, into a time-frequency domain using a time-frequency analysis. One or more suppression thresholds is determined for at least one frequency signal in the spectrogram, based on frequency characteristics of the converted reflections. A range response is constructed, characterizing the target and having interference signals removed in the time-frequency domain, by converting (into the range response) selected ones of the frequency signals in the spectrogram having a magnitude within the suppression threshold.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 3, 2022
    Inventors: Ryan Haoyun Wu, Jun Li, Maik Brett, Michael Andreas Staudenmaier
  • Publication number: 20220334240
    Abstract: Aspects of the present disclosure are directed to radar communications with disparate pulse repetition intervals, as may be implemented with radar transmission, receiver and processing circuitry. As may be utilized in accordance with one or more embodiments herein, time division multiplexing (TDM) multi-input multi-output (MIMO) radar signals are transmitted by transmitting sets of successive radar signals, each set having a pulse repetition interval (PRI) that is different than the PRI of sets of radar signals transmitted in another one of the sets. Positional characteristics of a target may be ascertained based on the PRI used in each of the sets and on phase characteristics of ones of the radar signals reflected from the target.
    Type: Application
    Filed: April 19, 2021
    Publication date: October 20, 2022
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Wendi Zhang, René Geraets
  • Publication number: 20220283286
    Abstract: A method and system are provided to resolve Doppler ambiguity and multiple-input, multiple-output array phase compensation issues present in Time Division Multiplexing MIMO radars by estimating an unambiguous radial velocity measurement. Embodiments apply a disambiguation algorithm that dealiases the Doppler spectrum to resolve the Doppler ambiguity of a range-Doppler detection. Phase compensation is then applied for corrected reconstruction of the MIMO array measurements. The dealiasing processing first forms multiple hypotheses associated with the phase corrections for the radar transmitters based on a measured radial velocity of a range-Doppler cell being processed. A correct hypothesis, from the multiple hypotheses, is selected based on a least-spurious spectrum criterion. Using this approach, embodiments require only single-frame processing and can be applied to two or more transmitters in a TDM MIMO radar system.
    Type: Application
    Filed: February 27, 2021
    Publication date: September 8, 2022
    Applicant: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Satish Ravindran
  • Publication number: 20220276338
    Abstract: Aspects of the present disclosure are directed toward apparatuses and/or methods involving the communication of radar signals. Certain aspects involve communicating time division multiplexing (TDM) multi-input multi-output (MIMO) radar signals, having pulses with a chirp interval time (CIT) that is different for respective chirps. Positional characteristics of a target may be ascertained based upon both the CIT between each chirp in the communicated radar signals and the time between each corresponding chirp in received ones of the signals reflected by the target. Communication of the radar signals may involve utilizing a combination of antennas to provide a virtual aperture.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Wendi Zhang, René Geraets
  • Publication number: 20220268911
    Abstract: In one example, a radar circuit uses computer processing circuitry for processing data corresponding to reflection signals via a sparse array. Output data indicative of signal magnitude associated with the reflection signals is generated, and then angle-of-arrival information is discerned therefrom by (e.g., iteratively): correlating the output data with at least one spatial frequency support vector indicative of a correlation peak for the output data; generating upper-side and lower-side support vectors which are neighbors along the spatial frequency spectrum for said at least one spatial frequency support vector, and providing, via a correlation of the upper-side and lower-side support vectors and said at least one spatial frequency support vector, at least one new vector that is more refined along the spatial frequency spectrum for said at least one spatial frequency support vector.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 25, 2022
    Inventors: Ryan Haoyun Wu, Jun Li, Maik Brett, Michael Andreas Staudenmaier
  • Publication number: 20220268884
    Abstract: Exemplary aspects are directed to a radar-based detection circuit or system with signal reception circuitry to receive reflection signals in response to radar signals transmitted towards objects. The system may include logic/computer circuitry and a multi-input multi-output (MIMO) virtual array to enhance resolution or remove ambiguities otherwise present in processed reflection signals. The MIMO array may include sparse linear arrays, each being associated with a unique antenna-element spacing from among a set of unique co-prime antenna-element spacings.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 25, 2022
    Inventors: Ryan Haoyun Wu, Jun Li, Maik Brett, Michael Andreas Staudenmaier
  • Publication number: 20220268883
    Abstract: In various examples, a radar system includes a logic circuit with an array for processing radar reflection signals. In a specific example, a method includes generating output data indicative of the reflection signals' amplitudes, and discerning angle-of-arrival information for the output data for the output data by correlating the output data with an iteratively-refined estimate of a sparse spectrum support vector (“support vector”). The approach may include: assessing at least one most probable spectrum support vector from among a plurality of most probable spectrum support vectors modeled as random values in a matrix drawn from a long-tail distribution that is controlled as a function of a scaling parameter; and update a set of parameters including a covariance estimate, the scaling parameter, and a noise variance parameter which is being associated with a measurement error for said at least one most probable spectrum support vector from a previous iteration.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 25, 2022
    Inventors: Ryan Haoyun Wu, Jun Li, Maik Brett, Michael Andreas Staudenmaier
  • Patent number: 11378681
    Abstract: Embodiments are disclosed that for synthetic aperture radar (SAR) systems and methods. Front-end circuitry transmits radar signals, receives return radar signals, and outputs digital radar data. FFT circuits process the digital radar data without zero-padding to generate FFT data corresponding to oversampled pixel range values. A processor further processes the FFT data to generate radar pixel data representing a radar image. Further, the FFT circuits can interpolate the FFT data based upon pixel ranges using a streamlined range computation process. This process pre-computes x-axis components for pixels in common rows and y-axis components for pixels in common columns within the FFT data. For one embodiment, a navigation processor is coupled to a SAR system within a vehicle, receives the radar pixel data, and causes one or more actions to occur based upon the radar pixel data, such as an advanced driver assistance system function or an autonomous driving function.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: July 5, 2022
    Assignee: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Maik Brett, Michael Andreas Staudenmaier
  • Publication number: 20220196795
    Abstract: A radar system utilizing a linear chirp that can achieve a larger MIMO virtual array than traditional systems is provided. Transmit channels transmit distinct chirp signals in an overlapped fashion such that the pulse repetition interval is kept short and the frame is kept short. This alleviates range migration and aids in achieving a high frame update rate. The chirp signals from differing transmitters can be separated on receive in the range spectrum domain, such that a MIMO virtual array construction is possible. Distinct chirps are delayed versions of the first chirp signal. Chirps overlap in the fast-time domain, but due to delay, there is separation in the range spectrum domain. When the delay is at least the instrument round-trip delay, transmitters are separable. Further, the wavelengths are identical across transmitters such that there is no residual-range versus angle ambiguity issue present in the claimed frequency-offset modulation range division MIMO system.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Applicant: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Douglas Alan Garrity, Maik Brett
  • Publication number: 20220187417
    Abstract: A distributed radar system, apparatus, architecture, and method is provided for coherently combining physically distributed radars to jointly' produce target scene information in a coherent fashion without sharing a common local oscillator (LO) reference by configuring a first (slave) radar to apply fast and slow time processing steps to target returns generated from a second (master) radar, to compute an estimated frequency offset and an estimated phase offset between the first and second radars based on information derived from the fast and slow time processing steps, and to apply the estimated frequency offset and estimated phase offset to generate a bi-static virtual array aperture at the first radar that is coherent in frequency and phase with a mono-static virtual array aperture generated at the second radar, thereby achieving better sensitivity, finer angular resolution, and low false detection rate.
    Type: Application
    Filed: January 27, 2022
    Publication date: June 16, 2022
    Inventors: Ryan Haoyun Wu, Arunesh Roy
  • Publication number: 20220171049
    Abstract: A co-prime coded DDM MIMO radar system, apparatus, architecture, and method are provided with a reference signal generator (112) that produces a transmit reference signal; a plurality of DDM transmit modules (11) that produce, condition, and transmit a plurality of transmit signals over which each have a different co-prime encoded progressive phase offset from the transmit reference signal; a receiver module (12) that receives a target return signal reflected from the plurality of transmit signals by a target and generates a digital signal from the target return signal; and a radar control processing unit (20) configured to detect Doppler spectrum peaks in the digital signal, where the radar control processing unit comprises a Doppler disambiguation module (25) that is configured with a CPC decoder to associate each detected Doppler spectrum peak with a corresponding DDM transmit module, thereby generating a plurality of transmitter-associated Doppler spectrum peak detections.
    Type: Application
    Filed: December 2, 2020
    Publication date: June 2, 2022
    Applicant: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Satish Ravindran
  • Publication number: 20220094397
    Abstract: A radar system, apparatus, architecture, and method are provided for generating a difference co-array virtual aperture by using a radar control processing unit to coherently combine virtual array apertures from multiple small aperture radar devices to construct a sparse MIMO virtual array aperture and to construct an extended difference co-array virtual array aperture that is larger than the MIMO virtual array aperture by using an FFT hardware accelerator to perform spectral-domain auto-correlation based processing of the sparse MIMO virtual array aperture to fill in holes in the sparse MIMO virtual array aperture and to suppress spurious sidelobes caused by holes in the sparse MIMO virtual array aperture.
    Type: Application
    Filed: July 27, 2021
    Publication date: March 24, 2022
    Applicant: NXP USA, Inc.
    Inventors: Ryan Haoyun Wu, Filip Alexandru Rosu, Daniel Silion, Tudor Bogatu