Patents by Inventor Ryan M. Asher

Ryan M. Asher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10765470
    Abstract: Various forms are directed to systems and methods for dissection and coagulation of tissue. A surgical instrument includes an end effector configured to dissect and seal tissue at a distal end thereof, and a generator that is electrically coupled to the surgical instrument and that is configured to deliver energy to the end effector. The surgical instrument includes an end effector configured to interact with a tissue at a distal end thereof, a generator electrically coupled to the surgical instrument and configured to deliver radio frequency (RF) energy and ultrasonic energy to the end effector to allow the end effector to interact with the tissue. The energy delivered to the end effector switches between RF energy and ultrasonic energy based on a determination of various factors such as tissue impedance.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: September 8, 2020
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Kevin L. Houser, Eitan T. Wiener, Kristen G. Denzinger, Ryan M. Asher, Phillip H. Clauda, Cameron R. Nott, Jeffrey D. Messerly, Frederick E. Shelton, IV, Geoffrey S. Strobl
  • Publication number: 20200268408
    Abstract: Systems, devices, and methods are operable to track usage of a surgical instrument and modify the performance of the surgical instrument based on the prior usage of the surgical instrument. Some surgical instruments are designed to have a limited service life beginning at their first use, or a limit to their overall usage in order to ensure safe use of the sensitive instruments. However, a lack of ability to track usage characteristics when the instrument is separated from an external power supply allows for user abuse and avoidance of such safety mechanisms. Adding a battery or capacitor to the instrument may allow for an ability to track usage when the instrument is separated from an external power supply. Implementing special user prompts, device use ratios, and device use half-life upon powering down of an instrument may additionally be used to prevent circumvention of safety features.
    Type: Application
    Filed: February 26, 2020
    Publication date: August 27, 2020
    Inventors: Craig N. Faller, Benjamin D. Dickerson, Jeffrey L. Aldridge, Jeffrey A. Bullock, Richard W. Timm, Ryan M. Asher, Timothy S. Holland, Craig T. Davis, Christina M. Hough, Cory G. Kimball, Ashvani K. Madan, David C. Yates, Shan Wan, Jacob S. Gee, Joseph E. Hollo, Chad P. Boudreaux, John B. Schulte, Tylor C. Muhlenkamp, Brian D. Black
  • Publication number: 20200261141
    Abstract: Provided is a method for managing radio frequency (RF) and ultrasonic signals output by a generator that includes a surgical instrument comprising an RF energy output and an ultrasonic energy output and a circuit configured to receive a combined RF and ultrasonic signal from the generator. The method includes receiving a combined radio frequency (RF) and ultrasonic signal from a generator, generating a RF filtered signal by filtering RF frequency content from the combined signal; filtering ultrasonic frequency content from the combined signal; generating an ultrasonic filtered signal; providing the RF filtered signal to the RF energy output; and providing the ultrasonic filtered signal to the ultrasonic energy output.
    Type: Application
    Filed: February 20, 2020
    Publication date: August 20, 2020
    Inventors: Eitan T. Wiener, David C. Yates, Ryan M. Asher, John A. Hibner, John E. Hein
  • Publication number: 20200170665
    Abstract: An ultrasonic instrument includes a housing, an ultrasonic transducer support by the housing, and an integrated usage indicator. The housing is configured to removably connect to a shaft assembly. The ultrasonic transducer is configured to be acoustically connected to a waveguide and operated a predetermined number of use cycles. The integrated usage indicator is operatively connected to the housing and includes a used state indicator. The used state indicator is configured to indicate to a clinician in a used state when the ultrasonic transducer has been operated at least the predetermined number of use cycles for limiting usage of the ultrasonic transducer to the predetermined number of use cycles.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Inventors: Ryan M. Asher, Brian D. Black, Chad P. Boudreaux, Nathan Cummings, William D. Dannaher, Craig T. Davis, Glenn W. Ellison, Frederick L. Estera, Jacob S. Gee, Geni Giannotti, Timothy S. Holland, Kevin L. Houser, Gregory W. Johnson, Amy M. Krumm, Jason R. Lesko, Stephen M. Leuck, Ion V. Nicolaescu, Candice Otrembiak, Amelia A. Pierce, Eric Roberson, Shan Wan
  • Patent number: 10624667
    Abstract: Systems, devices, and methods are operable to track usage of a surgical instrument and modify the performance of the surgical instrument based on the prior usage of the surgical instrument. Some surgical instruments are designed to have a limited service life beginning at their first use, or a limit to their overall usage in order to ensure safe use of the sensitive instruments. However, a lack of ability to track usage characteristics when the instrument is separated from an external power supply allows for user abuse and avoidance of such safety mechanisms. Adding a battery or capacitor to the instrument may allow for an ability to track usage when the instrument is separated from an external power supply. Implementing special user prompts, device use ratios, and device use half-life upon powering down of an instrument may additionally be used to prevent circumvention of safety features.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: April 21, 2020
    Assignee: Ethicon LLC
    Inventors: Craig N. Faller, Benjamin D. Dickerson, Jeffrey L. Aldridge, Jeffrey A. Bullock, Richard W. Timm, Ryan M. Asher, Timothy S. Holland, Craig T. Davis, Christina M. Hough, Cory G. Kimball, Ashvani K. Madan, David C. Yates, Shan Wan, Jacob S. Gee, Joseph E. Hollo, Chad P. Boudreaux, John B. Schulte, Tylor C. Muhlenkamp, Brian D. Black
  • Patent number: 10610286
    Abstract: Provided is a method for managing radio frequency (RF) and ultrasonic signals output by a generator that includes a surgical instrument comprising an RF energy output and an ultrasonic energy output and a circuit configured to receive a combined RF and ultrasonic signal from the generator. The method includes receiving a combined radio frequency (RF) and ultrasonic signal from a generator; generating a RF filtered signal by filtering RF frequency content from the combined signal; filtering ultrasonic frequency content from the combined signal; generating an ultrasonic filtered signal; providing the RF filtered signal to the RF energy output; and providing the ultrasonic filtered signal to the ultrasonic energy output.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: April 7, 2020
    Assignee: Ethicon LLC
    Inventors: Eitan T. Wiener, David C. Yates, Ryan M. Asher, John A. Hibner, John E. Hein
  • Publication number: 20200100830
    Abstract: A method for constructing a modular surgical system is disclosed. The method comprises providing a header module comprising a first power backplane segment, providing a surgical module comprising a second power backplane segment, assembling the header module and the surgical module to electrically couple the first power backplane segment and the second power backplane segment to each other to form a power backplane, and applying power to the surgical module through the power backplane.
    Type: Application
    Filed: September 5, 2019
    Publication date: April 2, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch, Gregory J. Bakos
  • Publication number: 20200085465
    Abstract: Ultrasonic surgical instruments including a handle housing, a switch frame, and a switch assembly are disclosed. The switch assembly may include a first switch arrangement movably supported on a distal portion of the handle housing and selectively movable relative to a first switch contact supported by the switch frame. The switch assembly may further include a second switch arrangement including a right switch button movably supported on a right side of the handle housing and selectively movable relative to a right switch contact supported by the switch frame, and a left switch button movably supported on a left side of the handle housing and selectively movable relative to a left switch contact supported by the switch frame. The first and second switch arrangements may be configured to be selectively actuatable by a single hand supporting the handle housing.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Richard W. Timm, Daniel W. Price, Jeffery T. Kirk, Jose Domingo Vasquez, Timothy G. Dietz, Richard D. Smith, Ryan M. Asher, Jeffrey L. Aldridge, Craig T. Davis, Emron J. Henry, James W. Voegele, Gregory W. Johnson
  • Publication number: 20200078070
    Abstract: A method of operating a modular surgical system including a control module, a first surgical module, and a second surgical module is disclosed. The method includes detachably connecting the first surgical module to the control module by stacking the first surgical module with the control module in a stack configuration, detachably connecting the second surgical module to the first surgical module by stacking the second surgical module with the control module and the first surgical module in the stack configuration, powering up the modular surgical system, and monitoring distribution of power from a power supply of the control module to the first surgical module and the second surgical module.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, Gregory J. Bakos
  • Publication number: 20200078080
    Abstract: An energy module for driving electrosurgical and/or ultrasonic surgical instruments is disclosed. The energy module can include an amplifier assembly that is configured to drive a variety of different energy modalities for one or more surgical instruments connected thereto. The energy module can further include a relay assembly for selectively coupling one or more of the amplifiers to different ports to which the surgical instruments are connectable. The amplifier assembly can include amplifiers for driving ultrasonic, bipolar, and/or monopolar energy.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Eitan T. Wiener, Ryan M. Asher, Brendan J. Oberkircher, John B. Schulte, John E. Hein, James R. Hoch
  • Publication number: 20200078071
    Abstract: An energy module is disclosed. The energy module includes a real time clock and a control circuit coupled to the real time clock. The circuit is configured to detect the presence of a surgical instrument coupled to the energy module, track usage of the surgical instrument in real time based on the real time clock, and deactivate the surgical instrument based on a predetermined total elapsed time based on the real time clock.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventor: Ryan M. Asher
  • Publication number: 20200078112
    Abstract: A modular surgical system is disclosed includes a header module including a power supply, a first surgical module, a second surgical module, and a segmented power backplane. The first surgical module is arrangeable in a stack configuration with the header module and the second surgical module. The segmented power backplane includes a first backplane segment in the header module, a second backplane segment in the first surgical module, and a third backplane segment in the second surgical module. The second backplane segment is detachably coupled to the first backplane segment in the stack configuration and the third backplane segment is detachably coupled to the second backplane segment in the stack configuration. The first backplane segment, the second backplane segment, and the third backplane segment are configured to cooperate to transmit energy from the power supply to the second surgical module in the stack configuration.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, Brian J. Melewski
  • Publication number: 20200078111
    Abstract: A modular energy system that can include a header module removably couplable to one or more energy modules. The one or more energy modules collectively comprise multiple ports to which a surgical instrument is connectable and are each configured to drive a plurality of energy modalities for the surgical instrument. The header module can comprise a display screen configured to display a user interface. The header module is connectable to a footswitch such that the header module can receive a control signal from the footswitch and can send a control signal to the footswitch. The header module can further comprise configured to assign the footswitch to a particular port and, based on user input received via the user interface, reassign the footswitch to another of the ports.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Brendan J. Oberkircher, Matthew C. Miller, Aaron C. Voegele, Ryan M. Asher, Cory G. Kimball, Eitan T. Wiener, Joshua Henderson, Benjamin J. Danziger, Grace E. Brooks, Nabeel Jadeed
  • Publication number: 20200078040
    Abstract: An ultrasonic instrument includes a body, an actuation assembly, a shaft assembly, and an end effector. The actuation assembly includes a mode selection member and an activation member. The shaft assembly extends distally from the body. The shaft assembly includes an acoustic waveguide. The end effector includes an ultrasonic blade. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The end effector is configured to be activated in a first activation mode in response to actuation of the activation member when the mode selection member is in a first position. The end effector is configured to be activated in a second activation mode in response to actuation of the activation member when the mode selection member is in a second position.
    Type: Application
    Filed: August 23, 2019
    Publication date: March 12, 2020
    Inventors: Paul F. Riestenberg, Benjamin M. Boyd, Jacob S. Gee, Craig N. Faller, Charles J. Scheib, Thomas C. Gallmeyer, Katelynn Kramer, Ryan M. Asher, Tylor C. Muhlenkamp, Geoffrey S. Strobl, David A. Monroe
  • Publication number: 20200078116
    Abstract: A first module configured to engage with a second module in a stacked configuration to define a modular energy system is provided. The second module comprises a second bridge connector portion that comprises a second outer housing and a second electrical connection element. The first module comprises a first bridge connector portion comprising a first outer housing and a first electrical connection element. The first outer housing is configured to engage the second outer housing during assembly of the modular energy system prior to the first electrical connection element engaging the second electrical connection element.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Brendan J. Oberkircher, Eitan T. Wiener, Wells D. Haberstich, Madeleine C. Jayme, Ryan M. Asher, Kristen G. Denzinger
  • Publication number: 20200078043
    Abstract: An ultrasonic instrument includes a body, a shaft assembly, and an end effector. The shaft assembly extends distally from the body. The shaft assembly includes an acoustic waveguide configured to acoustically couple with an ultrasonic transducer. The end effector includes an ultrasonic blade, a clamp arm and a clamp pad. The ultrasonic blade is in acoustic communication with the waveguide. The clamp arm is pivotally coupled with the shaft assembly. The clamp pad is configured to removably couple with the clamp arm while the clamp arm is pivotally coupled to the shaft assembly.
    Type: Application
    Filed: August 23, 2019
    Publication date: March 12, 2020
    Inventors: Benjamin D. Dickerson, Steven P. Smolik, David J. Cagle, Jeffrey D. Messerly, Frederick L. Estera, Paul F. Riestenberg, Charles J. Scheib, Tylor C. Muhlenkamp, Kristen G. Denzinger, Ryan M. Asher
  • Publication number: 20200078113
    Abstract: An energy module is disclosed. The energy module includes a housing, a control circuit positioned within the housing, a port defined within the housing, and an interface circuit positioned within the housing. The control circuit is configured to communicate with a data storage device. The port is configured to engage an electrical connector of an instrument. The port includes a sensor configured to detect the engagement of the electrical connector, detect the engagement of the electrical connector, send a detection signal to the control circuit, and supply electrical power from the energy module to the instrument. The interface circuit is coupled to the port and the control circuit and is configured to establish communication between the port and the control circuit.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Amrita S. Sawhney, Ryan M. Asher, William B. Weisenburgh, II, Mark E. Tebbe
  • Publication number: 20200078081
    Abstract: A first module configured to engage with a second module in a stacked configuration to define a modular energy system is provided. The first module comprises a first bridge connector portion and a second conductive portion. The first bridge connector portion is configured to engage with a second bridge connector portion of the second module as the first module and the second module are engaged. The first conductive portion is configured to engage with a second conductive portion of the second module as the first module and the second module are engaged, prior to engagement between the first bridge connector portion and the second bridge connector portion.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Madeleine C. Jayme, Kristen G. Denzinger, Joshua Henderson, Ryan M. Asher, William B. Weisenburgh, II, Amrita S. Sawhney
  • Publication number: 20200078117
    Abstract: An energy module connectable to a surgical instrument is disclosed. The energy module can include a circuit, which can include a first amplifier and a second amplifier coupled to a port of the energy module to which a surgical instrument is connectable. The first amplifier can be configured to generate a first drive signal at a first frequency range and the second amplifier can be configured to generate a second drive signal at a second frequency range. The circuit can be configured to control the amplifiers to deliver the first drive signal, the second drive signal, and/or a combination of the first and second drive signals to a surgical instrument connected to the port.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch
  • Publication number: 20200078115
    Abstract: A modular surgical system for use in a surgical procedure to treat tissue is disclosed. The modular surgical system includes a footer module including a power supply, a first surgical module configured to be stacked on top of the footer module, and a second surgical module configured to be stacked on top of the first surgical module. The first surgical module is detachably couplable to the footer module to receive power from the power supply of the footer module to generate a first therapeutic energy for delivery to the tissue. The second surgical module is detachably couplable to the first surgical module to receive power from the power supply of the footer module to generate a second therapeutic energy for delivery to the tissue.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Ryan M. Asher, Eitan T. Wiener, John B. Schulte