Patents by Inventor Ryan McMichael

Ryan McMichael has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953623
    Abstract: A sensor pod system includes one or more sensor pods with a plurality of sensors configured to collect data from an environment. A sensor pod may have an effective field of view created by individual sensors with overlapping fields of view. The sensor pod system may include sensors of different types and modalities. Sensor pods of the sensor pod system may be modularly installed on a vehicle, for example, an autonomous vehicle and collect and provide data of the environment during operation of the vehicle.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 9, 2024
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Daniel Glenn Johnson, Christopher William Labadie, Ryan McMichael, Daniel Miller, Peter Thomas Mitros, Anubhav Thakur, Joseph Patrick Warga, Austin In-Jei Yi
  • Patent number: 11921261
    Abstract: A lens assembly for systems such as imaging devices. The lens assembly may include at least five lens elements, where one or more of the lens elements includes positive optical power and one or more of the lenses includes negative optical power. The lens assembly may further include an aperture stop located between the lens elements. In some instances, the lens assembly provides a horizontal field of view that is at least 80 degrees while still including a total track length that is less than or equal to 50 millimeters and a diameter that is less than or equal to 13 millimeters. Additionally, in some instances, the lens assembly may cause all rays which impinge the sensor to be less than or equal to approximately 10 degrees.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: March 5, 2024
    Assignee: ZOOX, INC.
    Inventors: Ryan McMichael, Robert Nicholas Moor, Joseph Patrick Warga, Lee Tsung, Clark Pentico
  • Patent number: 11860374
    Abstract: A LIDAR system may include a laser diode that emits a beam having a slow axis and a fast axis so that a cross-section of the beam has a width substantially greater than a height. A first three-element lens may be optically aligned with a photodetector of the LIDAR system. A second three-element lens may be optically aligned with the diode laser. The second three-element lens may include at least one lens having a predetermined astigmatism that reduces the width of the beam with respect to the height.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: January 2, 2024
    Assignee: Zoox, Inc.
    Inventor: Ryan McMichael
  • Patent number: 11859865
    Abstract: Various implementations include a hot water heating system having a spine and two or more water heating units. The spine includes a top surface defining one or more top openings, two or more coupling areas, and cold water, hot water, and fuel manifolds. One or more top openings provide access to a cold water manifold inlet, a hot water manifold outlet, and a fuel manifold inlet. At least one of the coupling areas is located above another coupling area when the spine is oriented with the top surface facing upwardly. The water heating units are coupled to coupling areas such that a cold water inlet of the unit is fluidically coupled to the cold water manifold outlet, a hot water outlet of the unit is fluidically coupled to the hot water manifold inlet, and a fuel inlet of the unit is fluidically coupled to the fuel manifold outlet.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: January 2, 2024
    Assignee: Rinnai America Corporation
    Inventors: Rahul Natwar Goyal, Dennis Ryan McMichael, Jr.
  • Patent number: 11858524
    Abstract: A wind tunnel test may be performed on a vehicle to determine accumulation of substances (e.g., water) on sensors of the vehicle. Control surfaces may be created for the sensors based images representing the accumulations, where the control surfaces represent the include obstructions located where accumulations were detected during the test. The vehicle may then navigate around an environment using the control surfaces in order to determine a drivability of the vehicle. Also, a simulation may be performed, where the simulation outputs images representing simulated accumulations on the sensors. The outputs from the simulation may be compared to the results from the test in order to determine how accurately the simulation represents the test, determine domains in which the vehicle may safely operate, and/or improve the simulation.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: January 2, 2024
    Assignee: Zoox, Inc.
    Inventors: Holly Ho, Christopher William Labadie, Ryan McMichael, Joseph Patrick Warga
  • Patent number: 11842576
    Abstract: Techniques for determining a degraded state associated with a sensor are discussed herein. For example, a sensor associated with vehicle may captured data of an environment. A portion of the data may represent a portion of the vehicle. Data associated with a region of interest can be determined based on a calibration associated with the sensor. For example, in the context of image data, image coordinates may be used to determine a region of interest, while in the context of lidar data, a beam and/or azimuth can be used to determine a region of interest. A data metric can be determined for data in the region of interest, and an action can be determined based on the data metric. For example, the action can include cleaning a sensor, scheduling maintenance, reducing a confidence associated with the data, or slowing or stopping the vehicle.
    Type: Grant
    Filed: February 3, 2023
    Date of Patent: December 12, 2023
    Assignee: ZOOX, INC.
    Inventors: Christopher David Canady, Ryan McMichael, Irene Perali, Sandra Ruiz
  • Patent number: 11760313
    Abstract: A sensor pod system includes one or more sensor pods with a plurality of sensors configured to collect data from an environment. The sensor pod system may include a cleaning system to clean sensing surfaces of sensor pods during operation. The sensor pod system may include sensors of different types and modalities. Sensor pods of the sensor pod system may be modularly installed on a vehicle, for example, an autonomous vehicle and collect and provide data of the environment during operation of the vehicle.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 19, 2023
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Daniel Glenn Johnson, Christopher William Labadie, Ryan McMichael, Daniel Miller, Peter Thomas Mitros, Anubhav Thakur, Joseph Patrick Warga, Austin In-Jei Yi
  • Patent number: 11753003
    Abstract: A LIDAR system includes a laser emitter configured to emit a laser pulse in a sample direction of a sample area of a scene. A sensor element of the LIDAR system is configured to sense a return pulse, which is a reflection from the sample area corresponding to the emitted laser pulse. The LIDAR system may compare a width of the emitted laser pulse to a width of the return pulse in the time-domain. The comparison of the width of the emitted pulse to the width of the return pulse may be used to determine an orientation or surface normal of the sample area relative to the sample direction. Such a comparison leads to a measurement of the change of pulse width, referred to as pulse broadening or pulse stretching, from the emitted pulse to the return pulse.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 12, 2023
    Assignee: Zoox, Inc.
    Inventors: Adam Berger, Ryan McMichael, Bertrand Robert Douillard
  • Patent number: 11740335
    Abstract: A machine-learned (ML) model for detecting that depth data (e.g., lidar data, radar data) comprises a false positive attributable to particulate matter, such as dust, steam, smoke, rain, etc. The ML model may be trained based at least in part on simulated depth data generated by a fluid dynamics model and/or by collecting depth data during operation of a device (e.g., an autonomous vehicle. In some examples, an autonomous vehicle may identify depth data that may be associated with particulate matter based at least in part on an outlier region in a thermal image. For example, the outlier region may be associated with steam.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: August 29, 2023
    Assignee: Zoox, Inc.
    Inventors: Sreevatsan Bhaskaran, Mehran Ferdowsi, Ryan McMichael, Subasingha Shaminda Subasingha
  • Publication number: 20230177889
    Abstract: Techniques for determining a degraded state associated with a sensor are discussed herein. For example, a sensor associated with vehicle may captured data of an environment. A portion of the data may represent a portion of the vehicle. Data associated with a region of interest can be determined based on a calibration associated with the sensor. For example, in the context of image data, image coordinates may be used to determine a region of interest, while in the context of lidar data, a beam and/or azimuth can be used to determine a region of interest. A data metric can be determined for data in the region of interest, and an action can be determined based on the data metric. For example, the action can include cleaning a sensor, scheduling maintenance, reducing a confidence associated with the data, or slowing or stopping the vehicle.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 8, 2023
    Inventors: Christopher David Canady, Ryan McMichael, Irene Perali, Alejandro Ruiz
  • Patent number: 11623585
    Abstract: A sensor pod system includes one or more sensor pods with a plurality of sensors configured to collect data from an environment. A sensor pod may have an effective field of view created by individual sensors with overlapping fields of view. The sensor pod system may include sensors of different types and modalities. Sensor pods of the sensor pod system may be modularly disposed on a vehicle, for example, an autonomous vehicle to collect and provide data of the environment during operation of the vehicle. The sensor pods may be disposed at elevated locations around the vehicle to reduce obstacles within the sensor pods fields of view.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 11, 2023
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Daniel Glenn Johnson, Christopher William Labadie, Ryan McMichael, Daniel Miller, Peter Thomas Mitros, Anubhav Thakur, Joseph Patrick Warga, Austin In-Jei Yi
  • Patent number: 11572080
    Abstract: Techniques for determining a degraded state associated with a sensor are discussed herein. For example, a sensor associated with vehicle may captured data of an environment. A portion of the data may represent a portion of the vehicle. Data associated with a region of interest can be determined based on a calibration associated with the sensor. For example, in the context of image data, image coordinates may be used to determine a region of interest, while in the context of lidar data, a beam and/or azimuth can be used to determine a region of interest. A data metric can be determined for data in the region of interest, and an action can be determined based on the data metric. For example, the action can include cleaning a sensor, scheduling maintenance, reducing a confidence associated with the data, or slowing or stopping the vehicle.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: February 7, 2023
    Assignee: Zoox, Inc.
    Inventors: Christopher David Canady, Ryan McMichael, Irene Perali, Alejandro Ruiz
  • Patent number: 11529916
    Abstract: The described techniques relate to a simulation system that multiplexes sensor data from multiple sensors and outputs the multiplexed sensor data in channels corresponding to the multiple sensors to appropriate vehicle systems at an appropriate time based on encoded timestamp data. In examples, a multiplexer may receive sensor datasets associated with different sensors. The multiplexer may encode the different sensor datasets with timestamp data and supplemental data to generate an encoded dataset. The multiplexer may output the encoded dataset to a video output port to transmit the encoded dataset to a demultiplexer. The demultiplexer receives the encoded dataset from the video output port, and separates the encoded dataset into channels corresponding to the sensors from which the sensor data was received. The demultiplexer may output the datasets in the respective channels at a time (or times) indicated in the timestamp data and according to the supplemental data.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: December 20, 2022
    Assignee: Zoox, Inc.
    Inventors: Turhan Karadeniz, Garen Khanoyan, Ryan McMichael
  • Patent number: 11500067
    Abstract: Various lens designs for use in Time of Flight (ToF) sensor systems are discussed. Improvements to a ToF sensor system may be realized by, for example, incorporating a lens having particular features, such as a relatively short track length, fast lens speed (e.g., low f-number), low telecentricity, relatively flat field illumination, and fairly low cost. In some examples, such a lens of a ToF sensor system may be a lens assembly having a fixed focal length and that avoids use of lenses having aspheric surfaces so as to achieve relatively low cost.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 15, 2022
    Assignee: Zoox, Inc.
    Inventors: Ryan McMichael, Robert Nicholas Moor, Joseph Patrick Warga, Silas Kogure Wilkinson
  • Patent number: 11500075
    Abstract: A LIDAR system that identifies, from a channel output, a false positive return and/or suppressing a corresponding false positive detection caused, in some cases, a strong reflection by a highly reflective surface that caused light to leak from a first channel to a second channel. The LIDAR system described herein may identify, as a false return, a return detected in the second channel that has an intensity that is much less than a return in the first channel and indicates a distance that is the same or very close to a distance indicated the return in the first channel. Based at least in part on identifying a return as a false return, the LIDAR system may suppress a false detection associated with the false return by modifying a detection threshold.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: November 15, 2022
    Assignee: Zoox, Inc.
    Inventors: Sreevatsan Bhaskaran, Mehran Ferdowsi, Ryan McMichael, Subasingha Shaminda Subasingha
  • Patent number: 11480686
    Abstract: Particulate matter, such as dust, steam, smoke, rain, etc. may cause one or more sensor types to generate false positive detections. In particular, various depth measurements may be impeded by particulate matter. Identifying a false return and/or removing a false detection based at least in part on a sensor output may comprise determining a similarity of a portion of a return signal to an emitted light pulse or an expected return signal, determining a variance of the signal portion over time, determining a difference between a power spectrum of the return relative to an expected power spectrum, and/or determining that a duration associated with the signal portion meets or exceeds a threshold duration.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: October 25, 2022
    Assignee: Zoox, Inc.
    Inventors: Sreevatsan Bhaskaran, Mehran Ferdowsi, Ryan McMichael, Subasingha Shaminda Subasingha
  • Patent number: 11397253
    Abstract: A LIDAR system includes one or more LIDAR sensor assemblies, which may be mounted to a vehicle or other object. Each LIDAR sensor assembly includes a laser light source to emit laser light, and a light sensor to produce a light signal in response to sensing reflected light corresponding to reflection of the laser light emitted by the laser light source from a reference surface that is fixed in relation to the LIDAR sensor assembly. A controller of the LIDAR sensor assembly may calibrate the LIDAR sensor assembly based at least in part on a signal from the light sensor indicating detection of reflected light corresponding to reflection of a pulse of laser light reflected from the reference surface.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: July 26, 2022
    Assignee: Zoox, Inc.
    Inventors: Adam Berger, Riley Andrews, Ryan McMichael, Denis Nikitin, Brian Alexander Pesch, Brian Pilnick
  • Publication number: 20220186978
    Abstract: Various implementations include a hot water heating system having a spine and two or more water heating units. The spine includes a top surface defining one or more top openings, two or more coupling areas, and cold water, hot water, and fuel manifolds. One or more top openings provide access to a cold water manifold inlet, a hot water manifold outlet, and a fuel manifold inlet. At least one of the coupling areas is located above another coupling area when the spine is oriented with the top surface facing upwardly. The water heating units are coupled to coupling areas such that a cold water inlet of the unit is fluidically coupled to the cold water manifold outlet, a hot water outlet of the unit is fluidically coupled to the hot water manifold inlet, and a fuel inlet of the unit is fluidically coupled to the fuel manifold outlet.
    Type: Application
    Filed: December 9, 2021
    Publication date: June 16, 2022
    Inventors: Rahul Natwar Goyal, Dennis Ryan McMichael, JR.
  • Patent number: 11353590
    Abstract: A sensor pod system includes one or more sensor pods with a plurality of sensors configured to collect data from an environment. A sensor pod may have an effective field of view created by individual sensors with overlapping fields of view. The sensor pod system may include sensors of different types and modalities. Sensor pods of the sensor pod system may be modularly installed on a vehicle, for example, an autonomous vehicle and collect and provide data of the environment during operation of the vehicle. A combination of techniques may be used to calibrate a sensor pod prior to installation in the vehicle and may be used to determine if the sensor pod is compatible with other sensor pods and may also be used to calibrate other sensors when integrating the sensor pod into the vehicle.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: June 7, 2022
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Daniel Glenn Johnson, Christopher William Labadie, Ryan McMichael, Daniel Miller, Peter Thomas Mitros, Anubhav Thakur, Joseph Patrick Warga, Austin In-Jei Yi
  • Patent number: 11305724
    Abstract: A sensor pod system includes one or more sensor pods with a plurality of sensors configured to collect data from an environment. A sensor pod may include a housing and extend from a portion of a body of a vehicle. The sensor pod housing may have energy absorbing structures configured to absorb and dissipate energy during an impact in order to protect a pedestrian. The sensor pod may have deformable portions of the housing configured to absorb and dissipate energy during the impact. The sensor pod may have deformable fasteners coupling a sensor to the sensor pod configured to deform to absorb and dissipate energy during the impact.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 19, 2022
    Assignee: Zoox, Inc.
    Inventors: Derek Adams, Daniel Glenn Johnson, Christopher William Labadie, Ryan McMichael, Daniel Miller, Peter Thomas Mitros, Anubhav Thakur, Joseph Patrick Warga, Austin In-Jei Yi