Patents by Inventor Ryan Michael LAWRENCE

Ryan Michael LAWRENCE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240047772
    Abstract: In some aspects, a method of monitoring health of an electrochemical cell can include measuring a first anode voltage at a first anode tab from the plurality of anode tabs and a second anode voltage at a second anode tab from the plurality of anode tabs; measuring a first cathode voltage at a first cathode tab from the plurality of cathode tabs and a second cathode voltage at a second cathode tab from the plurality of cathode tabs; and calculating a first sense voltage, the first sense voltage being a difference between the first cathode voltage and the first anode voltage. In some embodiments, a second sense voltage can be calculated, the second sense voltage being a difference between the second cathode voltage and the second anode voltage. In some embodiments, a difference between the first sense voltage and the second sense voltage can be calculated.
    Type: Application
    Filed: August 1, 2023
    Publication date: February 8, 2024
    Inventors: Chad Alan HARTZOG, Mark YOUNG, Ryan Michael LAWRENCE, Junzheng CHEN, Naoki OTA
  • Publication number: 20230282906
    Abstract: Embodiments described herein relate to electrochemical cells and electrochemical cell systems with thermal insulation systems, and methods of producing the same. An electrochemical cell can include an anode material disposed on an anode current collector, a cathode material disposed on a cathode current collector, a separator disposed between the anode material and the cathode material, and an insulating structure disposed around and containing the anode material, anode current collector, cathode material, cathode current collector, and the separator. The anode material and/or the cathode material includes a semi-solid electrode material. The semi-solid electrode material includes an active material and a conductive material in a liquid electrolyte. The liquid electrolyte has an electrolyte salt concentration of at least about 2.0 M. In some embodiments, the insulating structure includes a frame with a first wall and a second wall disposed therein.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 7, 2023
    Inventors: Junzheng CHEN, Naoki OTA, Ryan Michael LAWRENCE, Jeffry DISKO, Chad Alan HARTZOG
  • Publication number: 20230238562
    Abstract: Embodiments described herein relate to electrochemical cells and production thereof under high pressure. In some aspects, a method of producing an electrochemical cell can include disposing a cathode material onto a cathode current collector to form a cathode, disposing an anode material onto an anode current collector to form an anode, and disposing the anode onto the cathode in an assembly jig with a separator positioned between the anode and the cathode to form an electrochemical cell, the assembly jig applying a force to the electrochemical cell such that a pressure in the cathode material is at least about 3,500 kPa. In some embodiments, the cathode material can be a first cathode material, and the method can further include disposing a second cathode material onto the first cathode material. In some embodiments, the first cathode material can include silicon. In some embodiments, the second cathode material can include graphite.
    Type: Application
    Filed: January 25, 2023
    Publication date: July 27, 2023
    Inventors: Yuki KUSACHI, Junzheng CHEN, Naoki OTA, Bradley Richard MILESON, Matthew Bonju LIM, Ryan Michael LAWRENCE
  • Publication number: 20230170169
    Abstract: Embodiments described herein relate generally to a current interrupt device (CID) including a frangible bulb that is configured to be thermally triggered. In some embodiments, the CID includes a breaking contact electrically coupled to a fixed contact and held in electrical contact by the frangible bulb. In some embodiments, the frangible bulb is configured to break at a temperature threshold. In some embodiments, the breaking contact is configured to bend, rotate and/or otherwise deform about a hinge point in order to become electrically disconnected from the fixed contact when the frangible bulb breaks. In some embodiments, opening the electrical circuit between the breaking contact and the fixed contact may prevent overcharging, overvoltage conditions, overcurrent conditions, thermal runaway, and/or other catastrophic failure events.
    Type: Application
    Filed: September 6, 2022
    Publication date: June 1, 2023
    Applicant: 24M Technologies, Inc.
    Inventors: Ryan Michael LAWRENCE, Richard K. HOLMAN
  • Publication number: 20230133464
    Abstract: Embodiments described herein include electrochemical cell modules. In some aspects, an electrochemical cell module includes a first electrochemical cell and a second electrochemical cell. The first electrochemical cell includes an anode material disposed on an anode current collector, a cathode material disposed on a cathode current collector, a separator disposed between the anode material and the cathode material, and a pouch material disposed on the anode current collector and the cathode current collector. The separator extends beyond the anode material and the cathode material and the pouch material extends beyond the separator. The portion of the separator that extends beyond the outer edge of the anode material and the cathode material and the portion of the pouch material that extends beyond the outer edge of the separator are folded at an angle of about 80 degrees to about 110 degrees with respect to the anode material and the cathode material.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 4, 2023
    Inventors: Naoki OTA, Junzheng CHEN, Raymond ZAGARS, Jeffry DISKO, Ryan Michael LAWRENCE
  • Publication number: 20230090853
    Abstract: Embodiments described herein relate to current interrupt devices (CIDs) for electrochemical cells that use a thermal trigger (e.g., shape memory and/or bi-metallic materials) to open an electrical circuit just prior to a thermal runaway or during short-circuit event to prevent catastrophic failure of the electrochemical cell. Embodiments include CIDs comprising a housing, a bus bar coupled to the housing, and a thermal trigger operably coupled to the bus bar. In some embodiments, the bus bar can include an engineered fracture site. In some embodiments, the thermal trigger is dimensioned and configured to deform at a predetermined temperature to break the bus bar at the engineered fracture site. In some embodiments, a portion of the bus bar travels about a hinge, opening the electrical circuit and preventing overcharging, thermal runaway, and/or other catastrophic failure events.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 23, 2023
    Applicant: 24M Technologies, Inc.
    Inventors: Matthew Russell TYLER, Ryan Michael LAWRENCE
  • Patent number: 11476551
    Abstract: Embodiments described herein relate to current interrupt devices (CIDs) for electrochemical cells that use a thermal trigger (e.g., shape memory and/or bi-metallic materials) to open an electrical circuit just prior to a thermal runaway or during short-circuit event to prevent catastrophic failure of the electrochemical cell. Embodiments include CIDs comprising a housing, a bus bar coupled to the housing, and a thermal trigger operably coupled to the bus bar. In some embodiments, the bus bar can include an engineered fracture site. In some embodiments, the thermal trigger is dimensioned and configured to deform at a predetermined temperature to break the bus bar at the engineered fracture site. In some embodiments, a portion of the bus bar travels about a hinge, opening the electrical circuit and preventing overcharging, thermal runaway, and/or other catastrophic failure events.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 18, 2022
    Assignee: 24M Technologies, Inc.
    Inventors: Matthew Russell Tyler, Ryan Michael Lawrence
  • Patent number: 11469065
    Abstract: Embodiments described herein relate generally to a current interrupt device (CID) including a frangible bulb that is configured to be thermally triggered. In some embodiments, the CID includes a breaking contact electrically coupled to a fixed contact and held in electrical contact by the frangible bulb. In some embodiments, the frangible bulb is configured to break at a temperature threshold. In some embodiments, the breaking contact is configured to bend, rotate and/or otherwise deform about a hinge point in order to become electrically disconnected from the fixed contact when the frangible bulb breaks. In some embodiments, opening the electrical circuit between the breaking contact and the fixed contact may prevent overcharging, overvoltage conditions, overcurrent conditions, thermal runaway, and/or other catastrophic failure events.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: October 11, 2022
    Assignee: 24M Technologies, Inc.
    Inventors: Ryan Michael Lawrence, Richard K. Holman
  • Publication number: 20220278427
    Abstract: Embodiments described herein relate to systems and stacks of multiple electrochemical cells. An electrochemical cell stack includes a plurality of electrochemical cells connected in series in a single pouch. Each electrochemical cell of the plurality of electrochemical cells includes an anode disposed on an anode current collector, a cathode disposed on a cathode current collector, and a separator disposed between the anode and the cathode. The anode current collector includes an anode tab and the cathode current collector includes a cathode tab. In some embodiments, a first electrochemical cell of the plurality of electrochemical cells can be connected in series to a second electrochemical cell of the plurality of electrochemical cells by electronically coupling the cathode tab of the first electrochemical cell to the anode tab of the second electrochemical cell.
    Type: Application
    Filed: May 13, 2022
    Publication date: September 1, 2022
    Applicant: 24M Technologies, Inc.
    Inventors: Ryan Michael LAWRENCE, Naoki OTA
  • Publication number: 20220172916
    Abstract: Embodiments described herein relate generally to a current interrupt device (CID) including a frangible bulb that is configured to be thermally triggered. In some embodiments, the CID includes a breaking contact electrically coupled to a fixed contact and held in electrical contact by the frangible bulb. In some embodiments, the frangible bulb is configured to break at a temperature threshold. In some embodiments, the breaking contact is configured to bend, rotate and/or otherwise deform about a hinge point in order to become electrically disconnected from the fixed contact when the frangible bulb breaks. In some embodiments, opening the electrical circuit between the breaking contact and the fixed contact may prevent overcharging, overvoltage conditions, overcurrent conditions, thermal runaway, and/or other catastrophic failure events.
    Type: Application
    Filed: July 9, 2021
    Publication date: June 2, 2022
    Applicant: 24M Technologies, Inc.
    Inventors: Ryan Michael LAWRENCE, Richard K. HOLMAN
  • Publication number: 20210384516
    Abstract: Embodiments described herein relate to electrochemical cells with one or more current collectors divided into segments, and methods of producing the same. A current collector divided into segments comprises a substantially planar conductive material including a connection region and an electrode region. The electrode region includes one or more dividers defining a plurality of electron flow paths. The plurality of electron flow paths direct the flow of electrons from the electrode region to the connection region. In some embodiments, the current collector includes a fuse section disposed between the electrode region and the connection region. In some embodiments, the fuse section can include a thin strip of conductive material, such that the thin strip of conductive material melts at a melting temperature and substantially prevent electron movement between the electrode region and the connection region.
    Type: Application
    Filed: June 4, 2021
    Publication date: December 9, 2021
    Inventors: Ryan Michael LAWRENCE, Naoki OTA
  • Patent number: 11094487
    Abstract: Embodiments described herein relate generally to a current interrupt device (CID) including a frangible bulb that is configured to be thermally triggered. In some embodiments, the CID includes a breaking contact electrically coupled to a fixed contact and held in electrical contact by the frangible bulb. In some embodiments, the frangible bulb is configured to break at a temperature threshold. In some embodiments, the breaking contact is configured to bend, rotate and/or otherwise deform about a hinge point in order to become electrically disconnected from the fixed contact when the frangible bulb breaks. In some embodiments, opening the electrical circuit between the breaking contact and the fixed contact may prevent overcharging, overvoltage conditions, overcurrent conditions, thermal runaway, and/or other catastrophic failure events.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: August 17, 2021
    Assignee: 24M Technologies, Inc.
    Inventors: Ryan Michael Lawrence, Richard K. Holman
  • Publication number: 20190393477
    Abstract: Embodiments described herein relate generally to a current interrupt device (CID) including a frangible bulb that is configured to be thermally triggered. In some embodiments, the CID includes a breaking contact electrically coupled to a fixed contact and held in electrical contact by the frangible bulb. In some embodiments, the frangible bulb is configured to break at a temperature threshold. In some embodiments, the breaking contact is configured to bend, rotate and/or otherwise deform about a hinge point in order to become electrically disconnected from the fixed contact when the frangible bulb breaks. In some embodiments, opening the electrical circuit between the breaking contact and the fixed contact may prevent overcharging, overvoltage conditions, overcurrent conditions, thermal runaway, and/or other catastrophic failure events.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 26, 2019
    Inventors: Ryan Michael LAWRENCE, Richard K. HOLMAN
  • Publication number: 20190036101
    Abstract: Embodiments described herein relate to current interrupt devices (CIDs) for electrochemical cells that use a thermal trigger (e.g., shape memory and/or bi-metallic materials) to open an electrical circuit just prior to a thermal runaway or during short-circuit event to prevent catastrophic failure of the electrochemical cell. Embodiments include CIDs comprising a housing, a bus bar coupled to the housing, and a thermal trigger operably coupled to the bus bar. In some embodiments, the bus bar can include an engineered fracture site. In some embodiments, the thermal trigger is dimensioned and configured to deform at a predetermined temperature to break the bus bar at the engineered fracture site. In some embodiments, a portion of the bus bar travels about a hinge, opening the electrical circuit and preventing overcharging, thermal runaway, and/or other catastrophic failure events.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 31, 2019
    Inventors: Matthew Russell TYLER, Ryan Michael LAWRENCE