Patents by Inventor Ryan Nicholas Huizing

Ryan Nicholas Huizing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10866001
    Abstract: Water vapor transport membranes for ERV and other water vapor transport applications are provided. The membranes include a substrate and an air impermeable selective layer coated on the substrate, the selective layer including a cellulose derivative and a sulfonated polyaryletherketone. In some embodiments the sulfonated polyaryletherketone is in a cation form and/or the selective layer includes sPEEK and CA in an sPEEK:CA (wt.:wt.) ratio in the range of about 7:3 to 2:3. Methods for making such membranes are provided. The methods include applying a coating solution/dispersion to a substrate and allowing the coating solution/dispersion to dry to form an air impermeable selective layer on the substrate, the coating solution/dispersion including a cellulose derivative and a sulfonated polyarylether ketone. In some embodiments the sulfonated polyaryletherketone is in a cation form and/or the coating solution/dispersion includes sPEEK and CA in an sPEEK:CA (wt.:wt.) ratio in the range of about 7:3 to 2:3.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: December 15, 2020
    Assignee: CORE Energy Recovery Solutions Inc.
    Inventors: Ryan Nicholas Huizing, Hao Chen, Frankie Kin Bong Wong
  • Publication number: 20200324252
    Abstract: An air-impermeable water vapor transport membrane comprises an active layer on a microporous polymeric substrate. The active layer comprises a polyethylene-oxide containing copolymer and a polar protic solvent in an amount of about 3% to about 100% of copolymer weight in the active layer. Molecules of the protic solvent are bonded to the copolymer. The polar protic solvent reduces temperature-dependent variability in the water-vapor permeability of the membrane.
    Type: Application
    Filed: January 16, 2020
    Publication date: October 15, 2020
    Inventors: Ryan Nicholas HUIZING, Hao CHEN, Frankie Kin Bong WONG
  • Patent number: 10569230
    Abstract: An air-impermeable water vapor transport membrane comprises an active layer on a microporous polymeric substrate. The active layer comprises a polyethylene-oxide containing copolymer and a polar protic solvent in an amount of about 3% to about 100% of copolymer weight in the active layer. Molecules of the protic solvent are bonded to the copolymer. The polar protic solvent reduces temperature-dependent variability in the water-vapor permeability of the membrane.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: February 25, 2020
    Assignee: CORE Energy Recovery Solutions Inc.
    Inventors: Ryan Nicholas Huizing, Hao Chen, Frankie Kin Bong Wong
  • Publication number: 20190285289
    Abstract: A heat and humidity exchanger has example application in exchanging heat and water vapor between fresh air entering a building and air being vented from the building. The heat and humidity exchanger has a self-supporting core formed from layered sheets of a moisture-permeable material. Plenums are arranged to direct fluid streams into and out of the core. The plenums may be on opposing sides of the core to permit counterflow exchange of heat and water vapor.
    Type: Application
    Filed: April 24, 2019
    Publication date: September 19, 2019
    Inventors: James Franklin DEAN, David Erwin KADYLAK, Ryan Nicholas HUIZING, Jordan Benda BALANKO, Curtis Warren MULLEN
  • Patent number: 10317095
    Abstract: A heat and humidity exchanger has example application in exchanging heat and water vapor between fresh air entering a building and air being vented from the building. The heat and humidity exchanger has a self-supporting core formed from layered sheets of a moisture-permeable material. Plenums are arranged to direct fluid streams into and out of the core. The plenums may be on opposing sides of the core to permit counterflow exchange of heat and water vapor.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: June 11, 2019
    Assignee: CORE Energy Recovery Solutions Inc.
    Inventors: James Franklin Dean, David Erwin Kadylak, Ryan Nicholas Huizing, Jordan Benda Balanko, Curtis Warren Mullen
  • Publication number: 20190093907
    Abstract: Water vapor transport membranes for ERV and other water vapor transport applications are provided. The membranes include a substrate and an air impermeable selective layer coated on the substrate, the selective layer including a cellulose derivative and a sulfonated polyaryletherketone. In some embodiments the sulfonated polyaryletherketone is in a cation form and/or the selective layer includes sPEEK and CA in an sPEEK:CA (wt.:wt.) ratio in the range of about 7:3 to 2:3. Methods for making such membranes are provided. The methods include applying a coating solution/dispersion to a substrate and allowing the coating solution/dispersion to dry to form an air impermeable selective layer on the substrate, the coating solution/dispersion including a cellulose derivative and a sulfonated polyarylether ketone. In some embodiments the sulfonated polyaryletherketone is in a cation form and/or the coating solution/dispersion includes sPEEK and CA in an sPEEK:CA (wt.:wt.) ratio in the range of about 7:3 to 2:3.
    Type: Application
    Filed: October 17, 2018
    Publication date: March 28, 2019
    Inventors: Ryan Nicholas HUIZING, Hao CHEN, Frankie Kin Bong WONG
  • Patent number: 10139116
    Abstract: Water vapor transport membranes for ERV and other water vapor transport applications are provided. The membranes include a substrate and an air impermeable selective layer coated on the substrate, the selective layer including a cellulose derivative and a sulfonated polyaryletherketone. In some embodiments the sulfonated polyaryletherketone is in a cation form and/or the selective layer includes s PEEK and CA in an s PEEK:CA (wt.:wt.) ratio in the range of about 7:3 to 2:3. Methods for making such membranes are provided. The methods include applying a coating solution/dispersion to a substrate and allowing the coating solution/dispersion to dry to form an air impermeable selective layer on the substrate, the coating solution/dispersion including a cellulose derivative and a sulfonated polyarylether ketone. In some embodiments the sulfonated polyaryletherketone is in a cation form and/or the coating solution/dispersion includes s PEEK and CA in an sPEEK:CA (wt.:wt.) ratio in the range of about 7:3 to 2:3.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: November 27, 2018
    Assignee: CORE Energy Recovery Solutions Inc.
    Inventors: Ryan Nicholas Huizing, Hao Chen, Frankie Kin Bong Wong
  • Publication number: 20180161735
    Abstract: An air-impermeable water vapor transport membrane comprises an active layer on a microporous polymeric substrate. The active layer comprises a polyethylene-oxide containing copolymer and a polar protic solvent in an amount of about 3% to about 100% of copolymer weight in the active layer. Molecules of the protic solvent are bonded to the copolymer. The polar protic solvent reduces temperature-dependent variability in the water-vapor permeability of the membrane.
    Type: Application
    Filed: May 30, 2016
    Publication date: June 14, 2018
    Inventors: Ryan Nicholas HUIZING, Hao CHEN, Frankie Kin Bong WONG
  • Publication number: 20170184317
    Abstract: Water vapor transport membranes for ERV and other water vapor transport applications are provided. The membranes include a substrate and an air impermeable selective layer coated on the substrate, the selective layer including a cellulose derivative and a sulfonated polyaryletherketone. In some embodiments the sulfonated polyaryletherketone is in a cation form and/or the selective layer includes s PEEK and CA in an s PEEK:CA (wt.:wt.) ratio in the range of about 7:3 to 2:3. Methods for making such membranes are provided. The methods include applying a coating solution/dispersion to a substrate and allowing the coating solution/dispersion to dry to form an air impermeable selective layer on the substrate, the coating solution/dispersion including a cellulose derivative and a sulfonated polyarylether ketone. In some embodiments the sulfonated polyaryletherketone is in a cation form and/or the coating solution/dispersion includes s PEEK and CA in an sPEEK:CA (wt.:wt.) ratio in the range of about 7:3 to 2:3.
    Type: Application
    Filed: June 16, 2015
    Publication date: June 29, 2017
    Inventors: Ryan Nicholas HUIZING, Hao CHEN, Frankie Kin Bong WONG
  • Patent number: 9517433
    Abstract: A water vapor transport membrane comprises a nanofibrous layer disposed on a macroporous support layer, the nanofibrous layer coated with a water permeable polymer. A method for making a water vapor transport membrane comprises forming a nanofibrous layer on a macroporous support layer and applying a water permeable polymer to the nanofibrous layer. The water permeable polymer can be applied for so that the nanofibrous layer is substantially or partially filled with the water permeable polymer, or so that the coating forms a substantially continuous layer on one surface of the nanofibrous layer. In some embodiments of the method, the nanofibrous layer is formed by electro-spinning at least one polymer on at least one side of the porous support layer. In some embodiments, the support layer is formable and the method further comprises forming a three-dimensional structure from the water vapor transport membrane, for example, by compression molding, pleating or corrugating.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: December 13, 2016
    Assignee: DPOINT TECHNOLOGIES INC.
    Inventors: Ryan Nicholas Huizing, Frank K. Ko
  • Publication number: 20160290664
    Abstract: A heat and humidity exchanger has example application in exchanging heat and water vapor between fresh air entering a building and air being vented from the building. The heat and humidity exchanger has a self-supporting core formed from layered sheets of a moisture-permeable material. Plenums are arranged to direct fluid streams into and out of the core. The plenums may be on opposing sides of the core to permit counterflow exchange of heat and water vapor.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 6, 2016
    Inventors: James Franklin DEAN, David Erwin KADYLAK, Ryan Nicholas HUIZING, Jordan Benda BALANKO, Curtis Warren MULLEN
  • Publication number: 20160109184
    Abstract: Coated membranes comprise a porous desiccant-loaded polymer substrate that is coated on one surface with a thin layer of water permeable polymer. Such membranes are particularly suitable for use in enthalpy exchangers and other applications involving exchange of moisture and optionally heat between gas streams with little or no mixing of the gas streams through the membrane. Such membranes have favorable heat and humidity transfer properties, have suitable mechanical properties, are resistant to the crossover of gases when the membranes are either wet or dry, and are generally low cost.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventor: Ryan Nicholas HUIZING
  • Patent number: 9255744
    Abstract: Coated membranes comprise a porous desiccant-loaded polymer substrate that is coated on one surface with a thin layer of water permeable polymer. Such membranes are particularly suitable for use in enthalpy exchangers and other applications involving exchange of moisture and optionally heat between gas streams with little or no mixing of the gas streams through the membrane. Such membranes have favorable heat and humidity transfer properties, have suitable mechanical properties, are resistant to the crossover of gases when the membranes are either wet or dry, and are generally low cost.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: February 9, 2016
    Assignee: DPOINT TECHNOLOGIES INC.
    Inventor: Ryan Nicholas Huizing
  • Publication number: 20150059578
    Abstract: A water vapour transport membrane comprises a nanofibrous layer disposed on a macroporous support layer, the nanofibrous layer coated with a water permeable polymer. A method for making a water vapour transport membrane comprises forming a nanofibrous layer on a macroporous support layer and applying a water permeable polymer to the nanofibrous layer. The water permeable polymer can be applied for so that the nanofibrous layer is substantially or partially filled with the water permeable polymer, or so that the coating forms a substantially continuous layer on one surface of the nanofibrous layer. In some embodiments of the method, the nanofibrous layer is formed by electro-spinning at least one polymer on at least one side of the porous support layer. In some embodiments, the support layer is formable and the method further comprises forming a three-dimensional structure from the water vapour transport membrane, for example, by compression molding, pleating or corrugating.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventors: Ryan Nicholas HUIZING, Frank K. KO
  • Patent number: 8936668
    Abstract: A water vapor transport membrane comprises a nanofibrous layer disposed on a macroporous support layer, the nanofibrous layer coated with a water permeable polymer. A method for making a water vapor transport membrane comprises forming a nanofibrous layer on a macroporous support layer and applying a water permeable polymer to the nanofibrous layer. The water permeable polymer can be applied for so that the nanofibrous layer is substantially or partially filled with the water permeable polymer, or so that the coating forms a substantially continuous layer on one surface of the nanofibrous layer. In some embodiments of the method, the nanofibrous layer is formed by electro-spinning at least one polymer on at least one side of the porous support layer. In some embodiments, the support layer is formable and the method further comprises forming a three-dimensional structure from the water vapor transport membrane, for example, by compression molding, pleating or corrugating.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: January 20, 2015
    Assignee: Dpoint Technologies Inc.
    Inventors: Ryan Nicholas Huizing, Frank K. Ko
  • Patent number: 8906136
    Abstract: A water vapor transport membrane comprises a nanofibrous layer disposed on a macroporous support layer, the nanofibrous layer coated with a water permeable polymer. A method for making a water vapor transport membrane comprises forming a nanofibrous layer on a macroporous support layer and applying a water permeable polymer to the nanofibrous layer. The water permeable polymer can be applied for so that the nanofibrous layer is substantially or partially filled with the water permeable polymer, or so that the coating forms a substantially continuous layer on one surface of the nanofibrous layer. In some embodiments of the method, the nanofibrous layer is formed by electro-spinning at least one polymer on at least one side of the porous support layer. In some embodiments, the support layer is formable and the method further comprises forming a three-dimensional structure from the water vapor transport membrane, for example, by compression molding, pleating or corrugating.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 9, 2014
    Assignee: Dpoint Technologies Inc.
    Inventors: Ryan Nicholas Huizing, Frank K. Ko
  • Publication number: 20140326432
    Abstract: A heat and humidity exchanger has example application in exchanging heat and water vapour between fresh air entering a building and air being vented from the building. The heat and humidity exchanger has a self-supporting core formed from layered sheets (710, 720) of a moisture-permeable material. Plenums (750) are arranged to direct fluid streams into and out of the core. The plenums (750) may be on opposing sides of the core to permit counterflow exchange of heat and water vapour. The plenums (750) are attached to the core along opposite edges of the sheets (710, 720).
    Type: Application
    Filed: December 19, 2012
    Publication date: November 6, 2014
    Applicant: dPoint Technologies Inc.
    Inventors: James Franklin Dean, David Erwin Kadylak, Ryan Nicholas Huizing, Jordan Benda Balanko, Curtis Warren Mullen
  • Publication number: 20140319706
    Abstract: A water vapour transport membrane comprises a nanofibrous layer disposed on a macroporous support layer, the nanofibrous layer coated with a water permeable polymer. A method for making a water vapour transport membrane comprises forming a nanofibrous layer on a macroporous support layer and applying a water permeable polymer to the nanofibrous layer. The water permeable polymer can be applied for so that the nanofibrous layer is substantially or partially filled with the water permeable polymer, or so that the coating forms a substantially continuous layer on one surface of the nanofibrous layer. In some embodiments of the method, the nanofibrous layer is formed by electro-spinning at least one polymer on at least one side of the porous support layer. In some embodiments, the support layer is formable and the method further comprises forming a three-dimensional structure from the water vapour transport membrane, for example, by compression molding, pleating or corrugating.
    Type: Application
    Filed: June 7, 2012
    Publication date: October 30, 2014
    Applicant: DPOINT TECHNOLOGIES INC.
    Inventors: Ryan Nicholas Huizing, Frank K. Ko
  • Publication number: 20120061045
    Abstract: Coated membranes comprise a porous desiccant-loaded polymer substrate that is coated on one surface with a thin layer of water permeable polymer. Such membranes are particularly suitable for use in enthalpy exchangers and other applications involving exchange of moisture and optionally heat between gas streams with little or no mixing of the gas streams through the membrane. Such membranes have favorable heat and humidity transfer properties, have suitable mechanical properties, are resistant to the crossover of gases when the membranes are either wet or dry, and are generally low cost.
    Type: Application
    Filed: May 17, 2010
    Publication date: March 15, 2012
    Applicant: DPOINT TECHNOLOGIES INC.
    Inventor: Ryan Nicholas Huizing