Patents by Inventor Ryan Rozich
Ryan Rozich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12124539Abstract: An image differentiation system receives input feature vectors for multiple input images and reference feature vectors for multiple reference images. In some cases, the feature vectors are extracted by an image feature extraction module trained based on training image triplets. A differentiability scoring module determines a differentiability score for each input image based on a distance between the input feature vectors and the reference feature vectors. The distance for each reference feature vector is modified by a weighting factor based on interaction metrics associated with the corresponding reference image. In some cases, an input image is identified as a differentiated image based on the corresponding differentiability score. Additionally or alternatively, an image modification module determines an image modification that increases the differentiability score of the input image. The image modification module generates a recommended image by applying the image modification to the input image.Type: GrantFiled: June 23, 2023Date of Patent: October 22, 2024Assignee: Adobe Inc.Inventors: Arshiya Aggarwal, Sanjeev Tagra, Sachin Soni, Ryan Rozich, Prasenjit Mondal, Jonathan Roeder, Ajay Jain
-
Patent number: 11907280Abstract: Embodiments of the technology described herein, provide improved visual search results by combining a visual similarity and a textual similarity between images. In an embodiment, the visual similarity is quantified as a visual similarity score and the textual similarity is quantified as a textual similarity score. The textual similarity is determined based on text, such as a title, associated with the image. The overall similarity of two images is quantified as a weighted combination of the textual similarity score and the visual similarity score. In an embodiment, the weighting between the textual similarity score and the visual similarity score is user configurable through a control on the search interface. In one embodiment, the aggregate similarity score is the sum of a weighted visual similarity score and a weighted textual similarity score.Type: GrantFiled: November 5, 2020Date of Patent: February 20, 2024Assignee: Adobe Inc.Inventors: Mikhail Kotov, Roland Geisler, Saeid Motiian, Dylan Nathaniel Warnock, Michele Saad, Venkata Naveen Kumar Yadav Marri, Ajinkya Kale, Ryan Rozich, Baldo Faieta
-
Publication number: 20240054991Abstract: An image search system uses a multi-modal model to determine relevance of images to a spoken query. The multi-modal model includes a spoken language model that extracts features from spoken query and a language processing model that extract features from an image. The multi-model model determines a relevance score for the image and the spoken query based on the extracted features. The multi-modal model is trained using a curriculum approach that includes training the spoken language model using audio data. Subsequently, a training dataset comprising a plurality of spoken queries and one or more images associated with each spoken query is used to jointly train the spoken language model and an image processing model to provide a trained multi-modal model.Type: ApplicationFiled: August 15, 2022Publication date: February 15, 2024Inventors: Ajay Jain, Sanjeev Tagra, Sachin Soni, Ryan Rozich, Nikaash Puri, Jonathan Roeder
-
Patent number: 11836850Abstract: Certain embodiments involve visually augmenting images of three-dimensional containers with virtual elements that fill one or more empty regions of the three-dimensional containers. For instance, a computing system receives a first image that depicts a storage container and identify sub-containers within the storage container. The computing system selects, from a virtual object library, a plurality of virtual objects that are semantically related to the sub-container. The computing system determines an arrangement of the virtual objects within the sub-container based on semantics associated with the sub-container and the plurality of virtual objects. The computing system generates a second image that depicts the arrangement of the plurality of virtual objects within the storage container and sub-containers. The computing system generates, for display, the second image depicting the storage container and the arrangement of the virtual objects.Type: GrantFiled: June 1, 2021Date of Patent: December 5, 2023Assignee: Adobe Inc.Inventors: Sanjeev Tagra, Sachin Soni, Ajay Jain, Ryan Rozich, Jonathan Roeder, Prasenjit Mondal
-
Publication number: 20230334121Abstract: An image differentiation system receives input feature vectors for multiple input images and reference feature vectors for multiple reference images. In some cases, the feature vectors are extracted by an image feature extraction module trained based on training image triplets. A differentiability scoring module determines a differentiability score for each input image based on a distance between the input feature vectors and the reference feature vectors. The distance for each reference feature vector is modified by a weighting factor based on interaction metrics associated with the corresponding reference image. In some cases, an input image is identified as a differentiated image based on the corresponding differentiability score. Additionally or alternatively, an image modification module determines an image modification that increases the differentiability score of the input image. The image modification module generates a recommended image by applying the image modification to the input image.Type: ApplicationFiled: June 23, 2023Publication date: October 19, 2023Inventors: Arshiya Aggarwal, Sanjeev Tagra, Sachin Soni, Ryan Rozich, Prasenjit Mondal, Jonathan Roeder, Ajay Jain
-
Patent number: 11748451Abstract: An image differentiation system receives input feature vectors for multiple input images and reference feature vectors for multiple reference images. In some cases, the feature vectors are extracted by an image feature extraction module trained based on training image triplets. A differentiability scoring module determines a differentiability score for each input image based on a distance between the input feature vectors and the reference feature vectors. The distance for each reference feature vector is modified by a weighting factor based on interaction metrics associated with the corresponding reference image. In some cases, an input image is identified as a differentiated image based on the corresponding differentiability score. Additionally or alternatively, an image modification module determines an image modification that increases the differentiability score of the input image. The image modification module generates a recommended image by applying the image modification to the input image.Type: GrantFiled: September 15, 2020Date of Patent: September 5, 2023Assignee: Adobe Inc.Inventors: Arshiya Aggarwal, Sanjeev Tagra, Sachin Soni, Ryan Rozich, Prasenjit Mondal, Jonathan Roeder, Ajay Jain
-
Publication number: 20220383369Abstract: Techniques are disclosed for generating image recommendations to facilitate the sale of a product. An example methodology includes identifying a product category associated with an image of the product provided by the seller, and a product sub-category associated with the product image. The method further includes retrieving one or more images of for-sale items. The retrieval is based on a search of for-sale listings using the identified product category and the identified product sub-category. The method further includes clustering the retrieved images of for-sale items into groups, each group associated with a perspective viewpoint of the for-sale item. The method further includes providing a selected image from each group as an image recommendation. The selection is based on a value score associated with each of the images of the for-sale items. A graphical status indicating completeness of the seller's image set is updated in response to recommended images being adopted.Type: ApplicationFiled: August 5, 2022Publication date: December 1, 2022Applicant: Adobe Inc.Inventors: Sanjeev Tagra, Sachin Soni, Ryan Rozich, Nitish Maurya, Jonathan Roeder, Ajay Jain, Ajay Bedi
-
Patent number: 11482041Abstract: Methods, apparatus, and systems are provided for obfuscating facial identity in images by synthesizing a new facial image for an input image. A base face is detected from or selected for an input image. Facial images that are similar to the base face are selected and combined to create a new facial image. The new facial image is added to the input image such that the input image includes a combination of the base face and the new facial image. Where no base face is detected in the input image, a base face is selected from reference facial images based at least on pose keypoints identified in the input image. After a new facial image is generated based on the selected base face, a combination of the new facial image and the base facial image are added to the input image by aligning one or more pose keypoints.Type: GrantFiled: October 21, 2020Date of Patent: October 25, 2022Assignee: ADOBE INC.Inventors: Sanjeev Tagra, Sachin Soni, Ajay Jain, Ryan Rozich, Jonathan Roeder, Arshiya Aggarwal, Prasenjit Mondal
-
Publication number: 20220277368Abstract: Techniques are disclosed for generating image recommendations to facilitate the sale of a product. An example methodology includes identifying a product category associated with an image of the product provided by the seller, and a product sub-category associated with the product image. The method further includes retrieving one or more images of for-sale items. The retrieval is based on a search of for-sale listings using the identified product category and the identified product sub-category. The method further includes clustering the retrieved images of for-sale items into groups, each group associated with a perspective viewpoint of the for-sale item. The method further includes providing a selected image from each group as an image recommendation. The selection is based on a value score associated with each of the images of the for-sale items. A graphical status indicating completeness of the seller's image set is updated in response to recommended images being adopted.Type: ApplicationFiled: February 26, 2021Publication date: September 1, 2022Applicant: Adobe Inc.Inventors: Sanjeev Tagra, Sachin Soni, Ryan Rozich, Nitish Maurya, Jonathan Roeder, Ajay Jain, Ajay Bedi
-
Patent number: 11430030Abstract: Techniques are disclosed for generating image recommendations to facilitate the sale of a product. An example methodology includes identifying a product category associated with an image of the product provided by the seller, and a product sub-category associated with the product image. The method further includes retrieving one or more images of for-sale items. The retrieval is based on a search of for-sale listings using the identified product category and the identified product sub-category. The method further includes clustering the retrieved images of for-sale items into groups, each group associated with a perspective viewpoint of the for-sale item. The method further includes providing a selected image from each group as an image recommendation. The selection is based on a value score associated with each of the images of the for-sale items. A graphical status indicating completeness of the seller's image set is updated in response to recommended images being adopted.Type: GrantFiled: February 26, 2021Date of Patent: August 30, 2022Assignee: Adobe Inc.Inventors: Sanjeev Tagra, Sachin Soni, Ryan Rozich, Nitish Maurya, Jonathan Roeder, Ajay Jain, Ajay Bedi
-
Patent number: 11392659Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for generating target products for a product search based on gesture input received via a digital canvas. For example, the disclosed systems can utilize digital image classification models to generate product sets based on individual visual product features of digital images of products. The disclosed systems can further receive gesture input within a digital canvas indicating visual product features. In addition, the disclosed systems can compare the gesture input of the digital canvas with representative digital images of product sets generated by particular classification models to identify product sets that include the indicated visual product features. Further, the disclosed systems can provide target products from the identified product sets for display via a product search interface website.Type: GrantFiled: February 28, 2019Date of Patent: July 19, 2022Assignee: Adobe Inc.Inventors: Ajay Jain, Sanjeev Tagra, Sachin Soni, Ryan Rozich, Jonathan Roeder
-
Publication number: 20220138247Abstract: Embodiments of the technology described herein, provide improved visual search results by combining a visual similarity and a textual similarity between images. In an embodiment, the visual similarity is quantified as a visual similarity score and the textual similarity is quantified as a textual similarity score. The textual similarity is determined based on text, such as a title, associated with the image. The overall similarity of two images is quantified as a weighted combination of the textual similarity score and the visual similarity score. In an embodiment, the weighting between the textual similarity score and the visual similarity score is user configurable through a control on the search interface. In one embodiment, the aggregate similarity score is the sum of a weighted visual similarity score and a weighted textual similarity score.Type: ApplicationFiled: November 5, 2020Publication date: May 5, 2022Inventors: Mikhail Kotov, Roland Geisler, Saeid Motiian, Dylan Nathaniel Warnock, Michele Saad, Venkata Naveen Kumar Yadav Marri, Ajinkya Kale, Ryan Rozich, Baldo Faieta
-
Publication number: 20220121839Abstract: Methods, apparatus, and systems are provided for obfuscating facial identity in images by synthesizing a new facial image for an input image. A base face is detected from or selected for an input image. Facial images that are similar to the base face are selected and combined to create a new facial image. The new facial image is added to the input image such that the input image includes a combination of the base face and the new facial image. Where no base face is detected in the input image, a base face is selected from reference facial images based at least on pose keypoints identified in the input image. After a new facial image is generated based on the selected base face, a combination of the new facial image and the base facial image are added to the input image by aligning one or more pose keypoints.Type: ApplicationFiled: October 21, 2020Publication date: April 21, 2022Inventors: Sanjeev Tagra, Sachin Soni, Ajay Jain, Ryan Rozich, Jonathan Roeder, Arshiya Aggarwal, Prasenjit Mondal
-
Publication number: 20220083809Abstract: An image differentiation system receives input feature vectors for multiple input images and reference feature vectors for multiple reference images. In some cases, the feature vectors are extracted by an image feature extraction module trained based on training image triplets. A differentiability scoring module determines a differentiability score for each input image based on a distance between the input feature vectors and the reference feature vectors. The distance for each reference feature vector is modified by a weighting factor based on interaction metrics associated with the corresponding reference image. In some cases, an input image is identified as a differentiated image based on the corresponding differentiability score. Additionally or alternatively, an image modification module determines an image modification that increases the differentiability score of the input image. The image modification module generates a recommended image by applying the image modification to the input image.Type: ApplicationFiled: September 15, 2020Publication date: March 17, 2022Inventors: Arshiya Aggarwal, Sanjeev Tagra, Sachin Soni, Ryan Rozich, Prasenjit Mondal, Jonathan Roeder, Ajay Jain
-
Publication number: 20210287425Abstract: Certain embodiments involve visually augmenting images of three-dimensional containers with virtual elements that fill one or more empty regions of the three-dimensional containers. For instance, a computing system receives a first image that depicts a storage container and identify sub-containers within the storage container. The computing system selects, from a virtual object library, a plurality of virtual objects that are semantically related to the sub-container. The computing system determines an arrangement of the virtual objects within the sub-container based on semantics associated with the sub-container and the plurality of virtual objects. The computing system generates a second image that depicts the arrangement of the plurality of virtual objects within the storage container and sub-containers. The computing system generates, for display, the second image depicting the storage container and the arrangement of the virtual objects.Type: ApplicationFiled: June 1, 2021Publication date: September 16, 2021Inventors: Sanjeev Tagra, Sachin Soni, Ajay Jain, Ryan Rozich, Jonathan Roeder, Prasenjit Mondal
-
Patent number: 11069034Abstract: The present disclosure relates to a computer-implemented method for generating an enhanced image from an original image, the method including segmenting the original image into a segmented image using an artificial neural network; curve fitting the segmented image to determine boundary artifacts; removing the determined boundary artifacts to generate a smoothed boundary image; and generating the enhanced image from the original image and the smoothed boundary image. The image maybe enhanced further by correcting for glare and adding artificial light.Type: GrantFiled: September 6, 2019Date of Patent: July 20, 2021Assignee: ADOBE INC.Inventors: Sanjeev Tagra, Sachin Soni, Ajay Jain, Ryan Rozich, Prasenjit Mondal, Jonathan Roeder
-
Patent number: 11055905Abstract: Certain embodiments involve visually augmenting images of three-dimensional containers with virtual elements that fill one or more empty regions of the three-dimensional containers. For instance, a computing system receives a first image that depicts a storage container and identify sub-containers within the storage container. The computing system selects, from a virtual object library, a plurality of virtual objects that are semantically related to the sub-container. The computing system determines an arrangement of the virtual objects within the sub-container based on semantics associated with the sub-container and the plurality of virtual objects. The computing system generates a second image that depicts the arrangement of the plurality of virtual objects within the storage container and sub-containers. The computing system generates, for display, the second image depicting the storage container and the arrangement of the virtual objects.Type: GrantFiled: August 8, 2019Date of Patent: July 6, 2021Assignee: Adobe Inc.Inventors: Sanjeev Tagra, Sachin Soni, Ajay Jain, Ryan Rozich, Prasenjit Mondal, Jonathan Roeder
-
Publication number: 20210073949Abstract: The present disclosure relates to a computer-implemented method for generating an enhanced image from an original image, the method including segmenting the original image into a segmented image using an artificial neural network; curve fitting the segmented image to determine boundary artifacts; removing the determined boundary artifacts to generate a smoothed boundary image; and generating the enhanced image from the original image and the smoothed boundary image. The image maybe enhanced further by correcting for glare and adding artificial light.Type: ApplicationFiled: September 6, 2019Publication date: March 11, 2021Inventors: SANJEEV TAGRA, SACHIN SONI, AJAY JAIN, RYAN ROZICH, PRASENJIT MONDAL, JONATHAN ROEDER
-
Publication number: 20210042993Abstract: Certain embodiments involve visually augmenting images of three-dimensional containers with virtual elements that fill one or more empty regions of the three-dimensional containers. For instance, a computing system receives a first image that depicts a storage container and identify sub-containers within the storage container. The computing system selects, from a virtual object library, a plurality of virtual objects that are semantically related to the sub-container. The computing system determines an arrangement of the virtual objects within the sub-container based on semantics associated with the sub-container and the plurality of virtual objects. The computing system generates a second image that depicts the arrangement of the plurality of virtual objects within the storage container and sub-containers. The computing system generates, for display, the second image depicting the storage container and the arrangement of the virtual objects.Type: ApplicationFiled: August 8, 2019Publication date: February 11, 2021Inventors: Sanjeev Tagra, Sachin Soni, Ajay Jain, Ryan Rozich, Prasenjit Mondal, Jonathan Roeder
-
Publication number: 20200279008Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for generating target products for a product search based on gesture input received via a digital canvas. For example, the disclosed systems can utilize digital image classification models to generate product sets based on individual visual product features of digital images of products. The disclosed systems can further receive gesture input within a digital canvas indicating visual product features. In addition, the disclosed systems can compare the gesture input of the digital canvas with representative digital images of product sets generated by particular classification models to identify product sets that include the indicated visual product features. Further, the disclosed systems can provide target products from the identified product sets for display via a product search interface website.Type: ApplicationFiled: February 28, 2019Publication date: September 3, 2020Inventors: Ajay Jain, Sanjeev Tagra, Sachin Soni, Ryan Rozich, Jonathan Roeder