Patents by Inventor Ryan Sillers

Ryan Sillers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11873520
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 16, 2024
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Patent number: 11685938
    Abstract: The subject of this invention is improvements in the yield and titer of biological production of muconic acid by fermentation. Increased activity of one or more enzymes involved in the muconic acid pathway leads to increased production of muconic acid.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: June 27, 2023
    Assignee: PTT GLOBAL CHEMICAL PUBLIC COMPANY LIMITED
    Inventors: Ryan Sillers, Theron Hermann, Michelle Spencer, Russell Udani, R. Rogers Yocum
  • Patent number: 11634735
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: April 25, 2023
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Publication number: 20220267816
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: September 30, 2021
    Publication date: August 25, 2022
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Publication number: 20220098600
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Application
    Filed: May 10, 2021
    Publication date: March 31, 2022
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Publication number: 20220090149
    Abstract: The present invention discloses a genetically engineered Kluyveromyces sp. yeast strain that is capable of producing lactic acid from carbon source selected from glucose, fructose, sucrose or a mixture thereof wherein the genetically engineered yeast comprises at least one heterologous DNA cassette that confers production of a protein functioning as a fructose importer. The genetically engineered yeast strain according to this invention has an improvement of fructose utilization and use fructose as a faster rate than conventional strain, allowing for shorter fermentation times and improved economics.
    Type: Application
    Filed: December 23, 2019
    Publication date: March 24, 2022
    Applicant: PTT GLOBAL CHEMICAL PUBLIC COMPANY LIMITED
    Inventors: Sudhanshu Vijay DOLE, Joel Stewart SCHMID, R. Rogers YOCUM, Theron HERMANN, Russell Lizardo UDANI, Sean Joseph REGAN, Mark Andrew SHEFF, Michelle SPENCER, Ryan SILLERS, Phatthanon PRASITCHOKE, Natthawut POOMSILA
  • Patent number: 11162125
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: November 2, 2021
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Publication number: 20210277429
    Abstract: The subject of this invention is improvements in the yield and titer of biological production of muconic acid by fermentation. Increased activity of one or more enzymes involved in the muconic acid pathway leads to increased production of muconic acid.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Applicant: PTT GLOBAL CHEMICAL PUBLIC COMPANY LIMITED
    Inventors: Ryan SILLERS, Theron HERMANN, Michelle SPENCER, Russell UDANI, R. Rogers YOCUM
  • Patent number: 11034982
    Abstract: Improved yeast cell with increased succinic acid production based on yield and titer. Increased activity of one or more enzymes involved in the pentose phosphate pathway, reducing flux through phosphoglucose isomerase, increasing flux to cytoplasmic acetyl-CoA, installation of a malic enzyme, and/or installation of a formate dehydrogenase leads to increased production of succinic acid.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: June 15, 2021
    Assignee: PTT GLOBAL CHEMICAL PUBLIC COMPANY LIMITED
    Inventor: Ryan Sillers
  • Patent number: 11034967
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 15, 2021
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV
  • Publication number: 20200325500
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Application
    Filed: July 1, 2020
    Publication date: October 15, 2020
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Publication number: 20200270657
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Application
    Filed: October 22, 2018
    Publication date: August 27, 2020
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Publication number: 20200181658
    Abstract: The subject of this invention is improvements in the yield and titer of biological production of muconic acid by fermentation. Increased activity of one or more enzymes involved in the muconic acid pathway leads to increased production of muconic acid.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 11, 2020
    Applicant: PTT Global Chemical Public Company Limited
    Inventors: Ryan Sillers, Theron Hermann, Michelle Spencer, Russell Udani, R. Rogers Yocum
  • Publication number: 20200157583
    Abstract: Improved yeast cell with increased succinic acid production based on yield and titer. Increased activity of one or more enzymes involved in the pentose phosphate pathway, reducing flux through phosphoglucose isomerase, increasing flux to cytoplasmic acetyl-CoA, installation of a malic enzyme, and/or installation of a formate dehydrogenase leads to increased production of succinic acid.
    Type: Application
    Filed: May 23, 2018
    Publication date: May 21, 2020
    Applicant: PTT GLOBAL CHEMICAL PUBLIC COMPANY LIMITED
    Inventor: Ryan SILLERS
  • Publication number: 20200131538
    Abstract: The invention provides processes for identifying and tracking genomic duplications that can occur during classical strain development or during the metabolic evolution of microbial strains originally constructed for the production of a biochemical through specific genetic manipulations, processes that stabilize the copy number of desirable genomic duplications using appropriate selectable markers, and non-naturally occurring microorganisms with stabilized copy numbers of a functional DNA sequence.
    Type: Application
    Filed: June 29, 2018
    Publication date: April 30, 2020
    Applicant: PTT GLOBAL CHEMICAL PUBLIC COMPANY LIMITED
    Inventors: R. Rogers YOCUM, Tammy GRABAR, Theron HERMANN, Christopher Joseph MARTIN, Ryan SILLERS, Xiaohui YU, Xiaomei ZHOU
  • Publication number: 20190345437
    Abstract: This present invention is in the field of producing renewable chemical feedstocks using biocatalysts that have been genetically engineered to increase their ability to convert renewable carbon resources into useful compounds. More specifically, the present invention provides a process for producing muconic acid form renewable carbon resources using a genetically modified organism.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 14, 2019
    Applicant: PTTGC INNOVATION AMERICA CORPORATION
    Inventors: R. Rogers YOCUM, Wei GONG, Sudhanshu DOLE, Ryan SILLERS, Meghal GANDHI, Janice G. PERO
  • Patent number: 10138504
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 27, 2018
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Publication number: 20180208951
    Abstract: The present in provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Application
    Filed: March 21, 2018
    Publication date: July 26, 2018
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Patent number: 9957530
    Abstract: The present invention provides for novel metabolic pathways leading to propanol, alcohol or polyol formation in a consolidated bioprocessing system (CBP), where lignocellulosic biomass is efficiently converted to such products. More specifically, the invention provides for a recombinant microorganism, where the microorganism expresses one or more native and/or heterologous enzymes; where the one or more enzymes function in one or more engineered metabolic pathways to achieve: (1) conversion of a carbohydrate source to 1,2-propanediol, isopropropanol, ethanol and/or glycerol; (2) conversion of a carbohydrate source to n-propanol and isopropanol; (3) conversion of a carbohydrate source to isopropanol and methanol; or (4) conversion of a carbohydrate source to propanediol and acetone; wherein the one or more native and/or heterologous enzymes is activated, upregulated or downregulated.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: May 1, 2018
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: John E. McBride, Vineet Rajgarhia, Arthur J. Shaw, IV, Shital A. Tripathi, Elena Brevnova, Nicky Caiazza, Johannes Pieter Van Dijken, Allan C. Froehlich, William Ryan Sillers, James H. Flatt
  • Publication number: 20170356000
    Abstract: The present invention provides for novel metabolic pathways to reduce or eliminate glycerol production and increase product formation. More specifically, the invention provides for a recombinant microorganism comprising a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source, such as lignocellulose, to a product, such as ethanol, wherein the one or more native and/or heterologous enzymes is activated, upregulated, or downregulated.
    Type: Application
    Filed: June 30, 2017
    Publication date: December 14, 2017
    Inventors: Aaron Argyros, William Ryan Sillers, Trisha Barrett, Nicky Caiazza, Arthur J. Shaw, IV