Patents by Inventor Ryan Steger

Ryan Steger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210401518
    Abstract: An instrument system includes an instrument, a drive system, and a controller operably connected to a first drive mechanism and a second drive mechanism of the drive system. The controller is configured to operate the first drive mechanism and the second drive mechanism drive a flexible tensioning member of the instrument to cause movement of an end effector of the instrument while maintaining a tension applied to the flexible tensioning member of the instrument in a tension range.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Inventors: Ryan Charles Abbott, John Ryan Steger, Daniel H. Gomez, Ian E. McDowall, Amy Kerdok
  • Publication number: 20210401519
    Abstract: A computer-assisted medical system includes robotic manipulators, a user input system operable to generate signals to control the manipulators, and a controller configured to execute instructions to perform operations. A portion of the user input system is movable relative to the plurality of manipulators. The operations include, in a pairing mode, associating a first manipulator of the plurality of manipulators with the portion of the user input system based on movement of the portion of the user input system relative to the first manipulator, and, in a following mode, controlling motion of the first manipulator in accordance with an indication generated by the user input system in response to operation of the portion of the user input system by a user.
    Type: Application
    Filed: July 18, 2018
    Publication date: December 30, 2021
    Inventors: Daniel H. Gomez, Ian E. McDowall, Govinda Payyavula, John Ryan Steger
  • Publication number: 20210401517
    Abstract: A teleoperated manipulator system includes a manipulator assembly and a tool actuation assembly coupled to the manipulator assembly. The tool actuation assembly inserts a tool, such as a surgical instrument, along an insertion axis and also rotates the tool around the insertion axis. The manipulator assembly includes an arm that rotates with reference to a mounting base to rotate the tool around a yaw axis that intersects the insertion axis. A distal portion of the arm defines an arcuate pitch arc, and a center of the pitch arc is coincident with the intersection of the insertion axis and the yaw axis. The tool actuation assembly is driven along the pitch arc to pitch the tool. The manipulator system is optionally a telesurgical system, and the tool is optionally a therapeutic, diagnostic, or imaging surgical instrument.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Ryan Charles Abbott, Daniel H. Gomez, John Ryan Steger
  • Patent number: 11207143
    Abstract: Systems and methods for minimally invasive computer-assisted telesurgery are described. A computer-assisted teleoperated surgery system includes a teleoperated instrument actuation pod. The surgical instrument actuation pod includes a plurality of linear actuators arranged around a surgical instrument. The linear actuators engage with actuator engagement members on the instrument and so drive movable parts on the instrument. The actuation pod is mounted on a teleoperated manipulator. Instrument pod mass is close to the teleoperated manipulator to minimize the pod's inertia, momentum, and gravity effects on the manipulator.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: December 28, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Ryan Charles Abbott, John Ryan Steger, Daniel H. Gomez, Ian E. McDowall, Amy Kerdok
  • Publication number: 20210386494
    Abstract: A teleoperational system receives a movement command in response to movement of an input device, in response to determining an instrument is being controlled based on the movement of the input device, maps the movement command to a first movement of the instrument in an instrument frame using a first mapping, and in response to determining a tissue probe is being controlled based on the movement of the input device, maps the movement command to a second movement of the tissue probe in a tissue probe frame using a second mapping. The first mapping maps motion in an input direction in the input frame to an instrument direction in the instrument frame. The second mapping maps motion in the input direction to a tissue probe direction in the tissue probe frame. The instrument direction corresponding with the input direction. The tissue probe direction not corresponding with the input direction.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 16, 2021
    Inventors: John Ryan Steger, Brian M. Crews, Craig R. Gerbi, Tyler J. Morrissette, Margaret M. Nixon, Joseph P. Orban, III, Theodore W. Rogers, Alain Sadaka, Charles E. Swinehart, Michael Turner, Kerry S. Wang
  • Publication number: 20210386493
    Abstract: A system is provided including a reclosable storage container comprising an interior sterile environment. The system also includes a sterile teleoperated component of a teleoperated surgical manipulator assembly in the interior sterile environment. A communications interface enables communication between a device outside the storage container and the component inside the storage container. A viewing window allows the stored component to be seen through the storage container. Multiple storage containers can be moved and stored. In an operating room, the storage container is opened, and the component is removed and assembled into the teleoperated surgical assembly.
    Type: Application
    Filed: October 14, 2019
    Publication date: December 16, 2021
    Inventors: John Ryan Steger, Daniel H. Gomez
  • Patent number: 11160621
    Abstract: A connector system is provided to connect a carriage that includes a rotatable drive member to a surgical instrument that includes a driven member, comprising a mechanical interface that includes a drive transmission member configured to receive a rotational drive force provided by the drive member at the internal surface region and to provide a corresponding rotational drive force to the driven member at the external surface region; and a support to mount an end portion of an optical fiber to the mechanical interface with a center axis of the first end portion aligned with an axis of rotation of the drive transmission member.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: November 2, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: John Ryan Steger
  • Patent number: 11154373
    Abstract: An instrument system includes an instrument, a drive system, and a controller operably connected to a first drive mechanism and a second drive mechanism of the drive system. The controller is configured to operate the first drive mechanism and the second drive mechanism drive a flexible tensioning member of the instrument to cause movement of an end effector of the instrument while maintaining a tension applied to the flexible tensioning member of the instrument in a tension range.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: October 26, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Ryan Charles Abbott, John Ryan Steger, Daniel H. Gomez, Ian E. McDowall, Amy Kerdok
  • Patent number: 11135027
    Abstract: A teleoperated manipulator system includes a manipulator assembly and a tool actuation assembly coupled to the manipulator assembly. The tool actuation assembly inserts a tool, such as a surgical instrument, along an insertion axis and also rotates the tool around the insertion axis. The manipulator assembly includes an arm that rotates with reference to amounting base to rotate the tool around a yaw axis that intersects the insertion axis. A distal portion of the arm defines an arcuate pitch arc, and a center of the pitch arc is coincident with the intersection of the insertion axis and the yaw axis. The tool actuation assembly is driven along the pitch arc to pitch the tool. The manipulator system is optionally a telesurgical system, and the tool is optionally a therapeutic, diagnostic, or imaging surgical instrument.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: October 5, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Ryan Charles Abbott, Daniel H. Gomez, John Ryan Steger
  • Patent number: 11129683
    Abstract: A teleoperational medical system comprises an input device and a manipulator configured to couple with and move an instrument. The system also comprises a control system including one or more processors. In response to a determination that the instrument is inserted into an instrument workspace in a corresponding direction to a field of view of the workspace, the control system is configured to map movement of the input device to movement of the instrument according to a first mapping. In response to a determination that the instrument is inserted into the instrument workspace in a non-corresponding direction to the field of view, the control system is configured to map movement of the input device to movement of the instrument according to a second mapping. The second mapping includes an inversion of the first mapping for at least one direction of motion of the instrument.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: September 28, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: John Ryan Steger, Brian M. Crews, Craig R. Gerbi, Tyler J. Morrissette, Margaret M. Nixon, Joseph P. Orban, III, Theodore W. Rogers, Alain Sadaka, Charles E. Swinehart, Michael Turner, Kerry S. Wang
  • Publication number: 20210251705
    Abstract: Systems and methods for minimally invasive computer-assisted telesurgery are described. For example, this disclosure provides surgical instruments and instrument drive systems for computer-assisted tele-operated surgery that are structured and operated to negate the effects of cable stretch within the surgical instruments.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Inventors: Ryan Charles Abbott, Daniel H. Gomez, Amy Kerdok, Ian E. McDowall, John Ryan Steger
  • Publication number: 20210205043
    Abstract: A force sensing device is provided for use with a surgical instrument shaft having a two degree-of-freedom wrist mounted end effector portion having a working surface; a housing defines an annular collar sized to snugly fit about the two degree-of-freedom wrist and defines a cap sized to snugly fit about the end effector portion; an optical fiber including a segment is embedded within the annular collar and including a segment embedded within the cap; a first fiber Bragg grating (FBG) formed in the segment of the optical fiber embedded within the cap.
    Type: Application
    Filed: May 24, 2019
    Publication date: July 8, 2021
    Inventor: John Ryan Steger
  • Patent number: 11020196
    Abstract: A shaft for a surgical instrument comprises an outer tube having a proximal end and a distal end, a central lumen extending through the outer tube, and a plurality of stiffening rods positioned around the central lumen. The plurality of stiffening rods may comprise a nonconductive material. The shaft may form part of an electrosurgical instrument. In another embodiment, a surgical instrument may comprise an end effector and a shaft having an outer tube having a proximal end and a distal end, a drive rod, and at least four stiffening rods positioned around the drive rod, each stiffening rod being positioned substantially immediately adjacent to the drive rod. The axial stiffness of the shaft increases incrementally during actuation of the end effector.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: June 1, 2021
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Peling G. Lee, Theodore W. Rogers, John Ryan Steger, Matthew R. Williams
  • Patent number: 11020192
    Abstract: Systems and methods for minimally invasive computer-assisted telesurgery are described. For example, this disclosure provides surgical instruments and instrument drive systems for computer-assisted tele-operated surgery that are structured and operated to negate the effects of cable stretch within the surgical instruments.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: June 1, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Ryan Charles Abbott, Daniel H. Gomez, Amy Kerdok, Ian E. McDowall, John Ryan Steger
  • Patent number: 11013574
    Abstract: A medical device system includes: a surgical arm mounting device including a coupler and a surgical arm interface, the coupler including a clamp for a first side rail of an operating table; and a support member including a brace, the brace extending from the coupler at least part way across the width of an operating table. The clamp has a first mechanical state in which the mounting device is fixed to the side rail, a second mechanical state in which the mounting device is translatable along the side rail, and a third mechanical state in which the mounting device is removable from the side rail. The surgical arm interface is configured to receive a mating mounting device interface of a surgical arm.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 25, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Daniel H. Gomez, John Ryan Steger
  • Publication number: 20210137635
    Abstract: A medical device system includes: an auxiliary rail including a frame and a flange extending from the frame; and a surgical arm mounting device including a coupler and a surgical arm interface. The frame is configured to be mounted on a side rail of an operating table. The coupler includes a clamp for the flange of the auxiliary table rail. The clamp of the coupler has a first mechanical state in which the mounting device is fixed to the auxiliary rail and a second mechanical state in which the mounting device is translatable along the auxiliary rail. The surgical arm interface receives a mating mounting device interface of a surgical arm.
    Type: Application
    Filed: April 26, 2019
    Publication date: May 13, 2021
    Inventors: Daniel H. Gomez, John Ryan Steger
  • Publication number: 20210128262
    Abstract: A computer-assisted system comprises a manipulator configured to support a tool, a lockable joint, and a controller. The manipulator extends distally from a base and comprises a distal portion. The lockable joint is coupled to the base and located proximally relative to the base. The controller is operably coupled to a powered joint. The powered joint is located distally relative to the base. The controller is configured to perform operations. The operations comprise: driving the powered joint to move the distal portion while the lockable joint is locked, and driving the powered joint to move the base while the lockable joint is unlocked and a position of the distal portion is externally maintained. A method includes processes for operating a computer-assisted system. A method includes determining a desired motion envelope for a tool supported by a manipulator, and positioning a base of the manipulator based on the desired motion envelope.
    Type: Application
    Filed: December 11, 2017
    Publication date: May 6, 2021
    Inventors: Daniel H. Gomez, John Ryan Steger
  • Publication number: 20210077213
    Abstract: Systems and methods for computer-assisted systems using robotic technology are described. For example, this disclosure describes systems and methods that can be used in various contexts such as, but not limited to, minimally invasive computer-assisted tele-operated surgery using robotic technology. The disclosure describes instruments and mechanisms for actuating and controlling the motions of such instruments. The instruments and actuator mechanisms may be used in medical operations and non-medical operations.
    Type: Application
    Filed: March 28, 2019
    Publication date: March 18, 2021
    Inventors: Daniel H. GOMEZ, Andrew Cullen WATERBURY, John Ryan STEGER, Alain SADAKA
  • Publication number: 20210052340
    Abstract: A system and method of controlling an end effector includes a drive unit having a first actuator and a second actuator, a moveable platform drivably coupled to the first actuator, first and second engagement members drivably coupled to the second actuator; and a control unit. The control unit is configured to actuate the first actuator to drive the platform, detect engagement of the first engagement member with a third engagement member of an instrument, detect engagement of the second engagement member with a fourth engagement member of the instrument, and actuate the second actuator to drive the first and second engagement members. Movement of the third and engagement member causes movement of a degree of freedom of an end effector of the instrument in a first direction. Movement of the fourth engagement member causes movement of the degree of freedom in a second direction opposite the first direction.
    Type: Application
    Filed: February 19, 2019
    Publication date: February 25, 2021
    Inventors: Dinesh RABINDRAN, Ryan C. ABBOTT, Daniel H. GOMEZ, John Ryan STEGER
  • Publication number: 20210015572
    Abstract: Systems and methods for computer-assisted systems using robotic technology are described. For example, this disclosure describes systems and methods that can be used in various contexts such as, but not limited to, minimally invasive computer-assisted tele-operated surgery using robotic technology. The disclosure describes instruments and mechanisms for actuating and controlling the motions of such instruments. The instruments and actuator mechanisms may be used in medical operations and non-medical operations.
    Type: Application
    Filed: March 28, 2019
    Publication date: January 21, 2021
    Inventors: Daniel H. Gomez, Andrew Cullen Waterbury, John Ryan Steger, Alain Sadaka