Patents by Inventor Ryan Supino

Ryan Supino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220066044
    Abstract: System and methods are described that illustrate how to collect and store data about geographic regions of jamming and/or spoofing of signal(s) emitted from satellite(s) of a global navigation satellite system (GNSS). An entity is configured to, and to communicate whether the jamming and/or spoofing has been detected, and the corresponding geographic location and the corresponding detection time. A processing system is configured to receive data about detected jamming and/or spoofing, and a corresponding geographic location and a detection time of such jamming and/or spoofing. Entities(s) may receive information about jamming and/or spoofing from the processing system. The received information may be used to alert the entities to dynamically changing jamming and/or spoofing. The received information may be further used so alert other entities to dynamically changing jamming and/or spoofing.
    Type: Application
    Filed: February 17, 2021
    Publication date: March 3, 2022
    Applicant: Honeywell International Inc.
    Inventors: James Arthur McDonald, Ryan Supino, John-Paul Gorsky
  • Publication number: 20190387153
    Abstract: The present application discloses an image resolution and transmission system in which a user can advantageously select one or more areas of interest to be captured and transmitted by a remote camera. Using a set of tools available on a computing device with a display, a user selects parameters such as location, shape and size of the area(s) of interest. Upon receiving one or more control signals, the remote camera transmits image data for the selected area(s) of interest at one or more optimal resolutions based on the available transmission bandwidth.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Applicant: Honeywell International Inc.
    Inventors: Robert E. De Mers, Charles T. Bye, Ryan Supino
  • Patent number: 9837935
    Abstract: An all-silicon electrode capacitive transducer comprising: a movable silicon microstructure coupled to a glass substrate, the movable silicon microstructure having a movable silicon electrode, the glass substrate having a top surface and at least one recess, the movable silicon electrode having a first flat surface parallel to a plane of the top surface of the glass substrate, the movable silicon electrode having a first electronic work function; and a stationary silicon electrode coupled to a glass substrate, the stationary silicon electrode located adjacent to the movable silicon electrode, the stationary silicon electrode configured to sense or actuate displacement of the movable silicon microstructure, wherein the stationary silicon electrode has a second flat surface parallel to the first flat surface, the stationary silicon electrode having a second electronic work function equal to the first electronic work function.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: December 5, 2017
    Assignee: Honeywell International Inc.
    Inventors: Burgess R. Johnson, Ryan Supino
  • Patent number: 9493344
    Abstract: A MEMS sensor comprises a substrate and at least one proof mass having a first plurality of combs. The proof mass is coupled to the substrate via one or more suspension beams such that the proof mass and the first plurality of combs are movable. The MEMS sensor also comprises at least one anchor having a second plurality of combs. The anchor is coupled to the substrate such that the anchor and second plurality of combs are fixed in position relative to the substrate. The first plurality of combs are interleaved with the second plurality of combs. Each of the combs comprises a plurality of conductive layers electrically isolated from each other by one or more non-conductive layers. Each conductive layer is individually coupled to a respective electric potential such that capacitance between the combs varies approximately linearly with displacement of the movable combs in an out-of-plane direction.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 15, 2016
    Assignee: Honeywell International Inc.
    Inventors: Robert D. Horning, Ryan Supino
  • Publication number: 20160039664
    Abstract: A microelectromechanical (MEMS) structure is provided. In one embodiment, the MEMS structure includes a glass substrate layer containing at least one embedded stress isolation feature. The glass substrate also includes at least one bump bond site configured for coupling the MEMS structure to a package. The MEMS structure also includes a semiconductor device layer, formed on the glass substrate layer, that includes a MEMS sensor.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 11, 2016
    Inventors: Grant H. Lodden, Ryan Supino
  • Patent number: 9227835
    Abstract: In an example, an interposer chip is provided. The interposer chip includes a base portion and a chip mounting portion. The interposer chip also includes one or more flexures connecting the base portion to the chip mounting portion. Additionally, a first plurality of projections extends from the base portion towards the chip mounting portion, and a second plurality of projections extends from the chip mounting portion towards the base portion and extending into interstices formed by first plurality of projections.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: January 5, 2016
    Assignee: Honeywell International Inc.
    Inventors: Robert D. Horning, Ryan Supino
  • Patent number: 9171964
    Abstract: Systems and methods for a micro-electromechanical system (MEMS) device are provided. In one embodiment, a system comprises a first outer layer and a first device layer comprising a first set of MEMS devices, wherein the first device layer is bonded to the first outer layer. The system also comprises a second outer layer and a second device layer comprising a second set of MEMS devices, wherein the second device layer is bonded to the second outer layer. Further, the system comprises a central layer having a first side and a second side opposite that of the first side, wherein the first side is bonded to the first device layer and the second side is bonded to the second device layer.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: October 27, 2015
    Assignee: Honeywell International Inc.
    Inventors: Robert D. Horning, Ryan Supino
  • Patent number: 9061891
    Abstract: Systems and methods for two degree of freedom dithering for micro-electromechanical system (MEMS) sensor calibration are provided. In one embodiment, a method for a device comprises forming a MEMS sensor layer, the MEMS sensor layer comprising a MEMS sensor and an in-plane rotator to rotate the MEMS sensor in the plane of the MEMS sensor layer. Further, the method comprises forming a first and second rotor layer and bonding the first rotor layer to a top surface and the second rotor layer to the bottom surface of the MEMS sensor layer, such that a first and second rotor portion of the first and second rotor layers connect to the MEMS sensor. Also, the method comprises separating the first and second rotor portions from the first and second rotor layers, wherein the first and second rotor portions and the MEMS sensor rotate about an in-plane axis of the MEMS sensor layer.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: June 23, 2015
    Assignee: Honeywell International Inc.
    Inventors: Ryan Supino, Eugen Cabuz, Burgess R. Johnson, Robert D. Horning
  • Publication number: 20150115770
    Abstract: An all-silicon electrode capacitive transducer comprising: a movable silicon microstructure coupled to a glass substrate, the movable silicon microstructure having a movable silicon electrode, the glass substrate having a top surface and at least one recess, the movable silicon electrode having a first flat surface parallel to a plane of the top surface of the glass substrate, the movable silicon electrode having a first electronic work function; and a stationary silicon electrode coupled to a glass substrate, the stationary silicon electrode located adjacent to the movable silicon electrode, the stationary silicon electrode configured to sense or actuate displacement of the movable silicon microstructure, wherein the stationary silicon electrode has a second flat surface parallel to the first flat surface, the stationary silicon electrode having a second electronic work function equal to the first electronic work function.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: Honeywell International Inc.
    Inventors: Burgess R. Johnson, Ryan Supino
  • Publication number: 20150024534
    Abstract: Systems and methods for two degree of freedom dithering for micro-electromechanical system (MEMS) sensor calibration are provided. In one embodiment, a method for a device comprises forming a MEMS sensor layer, the MEMS sensor layer comprising a MEMS sensor and an in-plane rotator to rotate the MEMS sensor in the plane of the MEMS sensor layer. Further, the method comprises forming a first and second rotor layer and bonding the first rotor layer to a top surface and the second rotor layer to the bottom surface of the MEMS sensor layer, such that a first and second rotor portion of the first and second rotor layers connect to the MEMS sensor. Also, the method comprises separating the first and second rotor portions from the first and second rotor layers, wherein the first and second rotor portions and the MEMS sensor rotate about an in-plane axis of the MEMS sensor layer.
    Type: Application
    Filed: October 7, 2014
    Publication date: January 22, 2015
    Inventors: Ryan Supino, Eugen Cabuz, Burgess R. Johnson, Robert D. Horning
  • Patent number: 8887550
    Abstract: Systems and methods for two degree of freedom dithering for micro-electro-mechanical system (MEMS) sensor calibration are provided. In one embodiment, a method for a device comprises forming a MEMS sensor layer, the MEMS sensor layer comprising a MEMS sensor and an in-plane rotator to rotate the MEMS sensor in the plane of the MEMS sensor layer. Further, the method comprises forming a first and second rotor layer and bonding the first rotor layer to a top surface and the second rotor layer to the bottom surface of the MEMS sensor layer, such that a first and second rotor portion of the first and second rotor layers connect to the MEMS sensor. Also, the method comprises separating the first and second rotor portions from the first and second rotor layers, wherein the first and second rotor portions and the MEMS sensor rotate about an in-plane axis of the MEMS sensor layer.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 18, 2014
    Assignee: Honeywell International Inc.
    Inventors: Ryan Supino, Eugen Cabuz, Burgess R. Johnson, Robert D. Horning
  • Patent number: 8847143
    Abstract: Systems and methods for an encoder and control scheme are provided. In one embodiment, a micro-electromechanical system (MEMS) device comprises: a stator having a first marker and a second marker arranged on a surface of the stator to form a sensing pattern; a sweeping element that dithers in a plane parallel to the surface of the stator along a sweep path that crosses the first marker and a second marker; an overlap sense circuit operable to measure an area overlap between the sweeping element and the sensing pattern, wherein the overlap sense circuit generates a pulse train signal output that varies as a function of the area overlap.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: September 30, 2014
    Assignee: Honeywell International Inc.
    Inventors: Eugen Cabuz, Robert D. Horning, Ryan Supino, Burgess R. Johnson
  • Patent number: 8776601
    Abstract: A MEMS sensor comprises a substrate and at least one proof mass having a first plurality of combs, wherein the proof mass is coupled to the substrate via one or more suspension beams such that the proof mass and the first plurality of combs are movable. The MEMS sensor also comprises at least one fixed anchor having a second plurality of combs. The first plurality of combs is interleaved with the second plurality of combs. Each of the combs in the first plurality of combs and the second plurality of combs comprises a plurality of conductive layers electrically isolated from each other by one or more non-conductive layers. Each conductive layer is individually coupled to a respective electric potential such that fringing electric fields are screened to reduce motion of the first plurality of combs along a sense axis due to the fringing electric fields.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 15, 2014
    Assignee: Honeywell International Inc.
    Inventors: Robert D. Horning, Ryan Supino
  • Patent number: 8735199
    Abstract: In an embodiment a method of fabricating a MEMS structure is provided. The method includes fabricating a working structure in a doped layer proximate a first surface of a silicon substrate. The first surface of the silicon substrate is bonded to a first planar glass structure having a first one or more sacrificial features embedded therein. The method also includes etching to remove a bulk of the silicon substrate, wherein the bulk is reverse of the first surface on the silicon substrate, wherein etching removes the bulk and leaves the working structure bonded to the first planar glass structure. The method also includes etching to remove the first one or more sacrificial features from the first planar glass structure.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: May 27, 2014
    Assignee: Honeywell International Inc.
    Inventors: Ryan Supino, Grant H. Lodden
  • Patent number: 8726717
    Abstract: A method for calibrating a micro-electro-mechanical system (MEMS) vibrating structure gyroscope is provided. The method includes obtaining an indication of a position of at least one proof mass with respect to at least one drive electrode and applying an electrostatic force to the at least one proof mass as a function of the indication, the electrostatic force configured to position the at least one proof mass in a first position with respect to at least one drive electrode.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: May 20, 2014
    Assignee: Honeywell International Inc.
    Inventors: Ryan Supino, Howard B. French
  • Publication number: 20140057382
    Abstract: In an embodiment a method of fabricating a MEMS structure is provided. The method includes fabricating a working structure in a doped layer proximate a first surface of a silicon substrate. The first surface of the silicon substrate is bonded to a first planar glass structure having a first one or more sacrificial features embedded therein. The method also includes etching to remove a bulk of the silicon substrate, wherein the bulk is reverse of the first surface on the silicon substrate, wherein etching removes the bulk and leaves the working structure bonded to the first planar glass structure. The method also includes etching to remove the first one or more sacrificial features from the first planar glass structure.
    Type: Application
    Filed: January 24, 2013
    Publication date: February 27, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ryan Supino, Grant H. Lodden
  • Publication number: 20120272731
    Abstract: Systems and methods for two degree of freedom dithering for micro-electromechanical system (MEMS) sensor calibration are provided. In one embodiment, a method for a device comprises forming a MEMS sensor layer, the MEMS sensor layer comprising a MEMS sensor and an in-plane rotator to rotate the MEMS sensor in the plane of the MEMS sensor layer. Further, the method comprises forming a first and second rotor layer and bonding the first rotor layer to a top surface and the second rotor layer to the bottom surface of the MEMS sensor layer, such that a first and second rotor portion of the first and second rotor layers connect to the MEMS sensor. Also, the method comprises separating the first and second rotor portions from the first and second rotor layers, wherein the first and second rotor portions and the MEMS sensor rotate about an in-plane axis of the MEMS sensor layer.
    Type: Application
    Filed: January 6, 2012
    Publication date: November 1, 2012
    Applicant: Honeywell International Inc.
    Inventors: Ryan Supino, Eugen Cabuz, Burgess R. Johnson, Robert D. Horning
  • Publication number: 20120272711
    Abstract: A method for calibrating a micro-electro-mechanical system (MEMS) vibrating structure gyroscope is provided. The method includes obtaining an indication of a position of at least one proof mass with respect to at least one drive electrode and applying an electrostatic force to the at least one proof mass as a function of the indication, the electrostatic force configured to position the at least one proof mass in a first position with respect to at least one drive electrode.
    Type: Application
    Filed: December 9, 2011
    Publication date: November 1, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Ryan Supino, Howard B. French
  • Publication number: 20120272730
    Abstract: Systems and methods for an encoder and control scheme are provided. In one embodiment, a micro-electromechanical system (MEMS) device comprises: a stator having a first marker and a second marker arranged on a surface of the stator to form a sensing pattern; a sweeping element that dithers in a plane parallel to the surface of the stator along a sweep path that crosses the first marker and a second marker; an overlap sense circuit operable to measure an area overlap between the sweeping element and the sensing pattern, wherein the overlap sense circuit generates a pulse train signal output that varies as a function of the area overlap.
    Type: Application
    Filed: November 30, 2011
    Publication date: November 1, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Eugen Cabuz, Robert D. Horning, Ryan Supino, Burgess R. Johnson
  • Publication number: 20120126349
    Abstract: Systems and methods for a micro-electromechanical system (MEMS) device are provided. In one embodiment, a system comprises a first outer layer and a first device layer comprising a first set of MEMS devices, wherein the first device layer is bonded to the first outer layer. The system also comprises a second outer layer and a second device layer comprising a second set of MEMS devices, wherein the second device layer is bonded to the second outer layer. Further, the system comprises a central layer having a first side and a second side opposite that of the first side, wherein the first side is bonded to the first device layer and the second side is bonded to the second device layer.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 24, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Robert D. Horning, Ryan Supino