Patents by Inventor Ryan T. Ott

Ryan T. Ott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11859266
    Abstract: A product includes a material having: nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material. A method includes forming a material comprising an alloy of nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: January 2, 2024
    Assignees: Lawrence Livermore National Security, LLC, Eck Industries, Inc., Iowa State University Research Foundation, Inc., University of Tennessee Research Foundation, UT-Battelle, LLC
    Inventors: Scott K. McCall, Alexander Baker, Hunter B. Henderson, Tian Li, Aurelien Perron, Zachary Cole Sims, David Weiss, Ryan T. Ott, Orlando Rios, Max Neveau
  • Publication number: 20230405673
    Abstract: A method for fabrication of an anisotropic magnet comprises placing magnet alloy feedstock particles in a deformable metallic container and thermomechanically working the filled container in a manner to elongate the filled container and reduce its cross-sectional area to consolidate the magnet alloy particles to an elongated shape and impart a preferential grain texture to the consolidated, elongated shape. The consolidated, elongated shape is machined to a near-final magnet shape that has a smaller dimension such as magnet length and that includes a metallic tubular skin thereon.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 21, 2023
    Inventors: Jun Cui, Ryan T. Ott, Wei Tang, Xubo Liu, Cajetan Ikenna Niebedim, Gaoyuan Ouyang, Chaochao Pan
  • Patent number: 11718898
    Abstract: An alloy includes aluminum, a rare earth element, and an alloying element selected from the following: Si, Cu, Mg, Fe, Ti, Zn, Zr, Mn, Ni, Sr, B, Ca, and a combination thereof. The aluminum (Al), the rare earth element (RE), and the alloying element are characterized by forming at least one form of an intermetallic compound. An amount of the rare earth element in the alloy is in a range of about 1 wt. % to about 12 wt. %, and an amount of the alloying element in the alloy is greater than an amount of the alloying element present in the intermetallic compound.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: August 8, 2023
    Assignees: Lawrence Livermore National Security, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc., UT-Battelle, LLC, Eck Industries, Inc.
    Inventors: Emily E. Moore, Hunter B. Henderson, Aurelien Perron, Scott K. McCall, Orlando Rios, Zachary C. Sims, Michael S. Kesler, David Weiss, Patrice E. A. Turchi, Ryan T. Ott
  • Publication number: 20230235432
    Abstract: MMC’s comprising an Al—RE alloy-based matrix and ceramic, metal and/or intermetallic reinforcement particulates dispersed in the alloy matrix provide improved strength and ductility wherein the reinforcement particulates have a higher melting temperature than the matrix alloy.
    Type: Application
    Filed: January 23, 2023
    Publication date: July 27, 2023
    Inventors: Ryan T. Ott, Fanqiang Meng, Scott K. McCall, Hunter B. Henderson, Oriando Rios, Zachary C. Sims, David Weiss
  • Publication number: 20220380870
    Abstract: A product includes a material having aluminum and at least one rare earth element (REE). The material includes the following microstructure features: at least 1 volume % particles of a phase of an aluminum-rare earth element alloy, the particles comprise at least 5 weight % of the at least one rare earth element, the particles have an average aspect ratio less than or equal to 5, and an average interparticle spacing between the particles is less than or equal to 1 ?m. A method includes forming a base material, the base material having aluminum and at least one rare earth element (REE), and working the base material to form a product.
    Type: Application
    Filed: June 1, 2021
    Publication date: December 1, 2022
    Inventors: Hunter Bryant Henderson, David Weiss, Ryan T. Ott, Orlando Rios
  • Publication number: 20220380868
    Abstract: Production of a bulk Al-RE alloy body (product) using cast billets/ingots (cooling rates <100 C/s) or rapidly solidified Al-RE particulates (cooling rates 102-106° C./second) that have beneficial microstructural refinements that are further refined by subsequent consolidation to produce a consolidated bulk alloy product having excellent mechanical properties over a wide temperature range such as up to and above 230° C.
    Type: Application
    Filed: May 25, 2022
    Publication date: December 1, 2022
    Inventors: Ryan T. Ott, Orlando Rios, Zachary C. Sims, David Weiss, Michael G. Kesler, Fanqiang Meng, Scott K. McCall, Hunter B. Henderson
  • Publication number: 20220275483
    Abstract: A product includes a material having: nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material. A method includes forming a material comprising an alloy of nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material.
    Type: Application
    Filed: February 25, 2022
    Publication date: September 1, 2022
    Inventors: Scott K. McCall, Alexander Baker, Hunter B. Henderson, Tian Li, Aurelien Perron, Zachary Cole Sims, David Weiss, Ryan T. Ott, Orlando Rios, Max Neveau
  • Publication number: 20220154310
    Abstract: The present disclosure provides stable elastocaloric cooling materials and methods for producing and using the same. Elastocaloric cooling materials of the present disclosure are capable of withstanding 106 cycles. In some embodiments, elastocaloric cooling materials of the present disclosure comprise a mixture of a transforming alloy and a non-transforming intermetallic phase at a ratio of from about 30-70% transforming alloy to about 70%-30% of non-transforming intermetallic phase.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 19, 2022
    Applicants: University of Maryland, College Park, Iowa State University Research Foundation, Colorado School of Mines, The Government of the United States as Represented by the Secretary, Department of Energy, Ames Labo
    Inventors: Ichiro TAKEUCHI, Jun CUI, Huilong HOU, Valery I. LEVITAS, Ryan T. OTT, Aaron P. STEBNER
  • Publication number: 20220145486
    Abstract: A product includes an aluminum alloy having an anodized layer. The alloy has a bulk composition including at least 1 wt. % of one or more rare earth elements (REEs). A product includes microstructures extending across a boundary defined between an anodized layer and an unoxidized alloy. Each microstructure includes an intermetallic phase transitioning to an oxidized intermetallic phase across the boundary. A product includes an anodized layer where up to 90% of a thickness of the layer includes voids resulting at least in part from dissolution of a rare earth element oxidized intermetallic phase. The voids are in a morphology of the dissolved oxidized intermetallic phase.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 12, 2022
    Inventors: Scott K. McCall, David Weiss, Michael S. Kesler, Michael J. Thompson, Orlando Rios, Hunter B. Henderson, Zachary Cole Sims, Ryan T. Ott
  • Publication number: 20210108292
    Abstract: An alloy includes aluminum, a rare earth element, and an alloying element selected from the following: Si, Cu, Mg, Fe, Ti, Zn, Zr, Mn, Ni, Sr, B, Ca, and a combination thereof. The aluminum (Al), the rare earth element (RE), and the alloying element are characterized by forming at least one form of an intermetallic compound. An amount of the rare earth element in the alloy is in a range of about 1 wt. % to about 12 wt. %, and an amount of the alloying element in the alloy is greater than an amount of the alloying element present in the intermetallic compound.
    Type: Application
    Filed: July 13, 2020
    Publication date: April 15, 2021
    Inventors: Emily E. Moore, Hunter B. Henderson, Aurelien Perron, Scott K. McCall, Orlando Rios, Zachary C. Sims, Michael S. Kesler, David Weiss, Patrice E. A. Turchi, Ryan T. Ott
  • Patent number: 10323299
    Abstract: A method is provided for treating a rare earth metal-bearing scrap material by melting an extractant selected from the group consisting of bismuth (Bi) and lead (Pb) and contacting the melted extractant and the scrap material at a temperature and time to recover at least one of the light rare earth metal content and the heavy rare earth metal content as a metallic extractant alloy, which can be subjected to vacuum distillation or sublimation to recover the rare earth metal(s). The method can be practiced to recover the light rare earth metal content and the heavy rare earth metal content concurrently in a one-step process or separately and sequentially in a two-step process.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: June 18, 2019
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Ryan T. Ott, Ralph W. McCallum
  • Patent number: 9725788
    Abstract: A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: August 8, 2017
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Ryan T. Ott, Ralph W. McCallum, Lawrence L. Jones
  • Publication number: 20170016088
    Abstract: A method is provided for treating a rare earth metal-bearing scrap material by melting an extractant selected from the group consisting of bismuth (Bi) and lead (Pb) and contacting the melted extractant and the scrap material at a temperature and time to recover at least one of the light rare earth metal content and the heavy rare earth metal content as a metallic extractant alloy, which can be subjected to vacuum distillation or sublimation to recover the rare earth metal(s). The method can be practiced to recover the light rare earth metal content and the heavy rare earth metal content concurrently in a one-step process or separately and sequentially in a two-step process.
    Type: Application
    Filed: June 28, 2016
    Publication date: January 19, 2017
    Inventors: Ryan T. Ott, Ralph W. McCallum
  • Publication number: 20160362766
    Abstract: A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.
    Type: Application
    Filed: July 15, 2015
    Publication date: December 15, 2016
    Inventors: Ryan T. Ott, Ralph W. McCallum, Lawrence L. Jones
  • Patent number: 6918973
    Abstract: In accordance with a preferred embodiment of the invention, an alloy or other composite material is provided formed of a bulk metallic glass matrix with a microstructure of crystalline metal particles. The alloy preferably has a composition of (XaNibCuc)100?d?cYdAlc, wherein the sum of a, b and c equals 100, wherein 40?a?80, 0?b?35, 0?c?40, 4?d?30, and 0?e?20, and wherein preferably X is composed of an early transition metal and preferably Y is composed of a refractory body-centered cubic early transition metal. A preferred embodiment of the invention also provides a method of producing an alloy composed of two or more phases at ambient temperature. The method includes the steps of providing a metastable crystalline phase composed of at least two elements, heating the metastable crystalline phase together with at least one additional element to form a liquid, casting the liquid, and cooling the liquid to form the alloy.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: July 19, 2005
    Assignees: Johns Hopkins University, United States Army Research Laboratory
    Inventors: Todd C. Hufnagel, Ryan T. Ott, Cang Fan, Laszlo Kecskes