Patents by Inventor Ryan Vaughan

Ryan Vaughan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10525552
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 7, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Publication number: 20180133034
    Abstract: A scaffold includes a marker connected to a strut. The marker is retained within the strut by a tongue-and-groove connection. The marker is attached to the strut by a process that includes pressing a non-circular marker into a rectangular hole of the scaffold strut. The strut sidewalls are restrained to produce the tongue and groove connection.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 17, 2018
    Inventors: Ryan Vaughan, Matthew J. Chludzinski, John A. Simpson
  • Publication number: 20170304949
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Patent number: 9744625
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: August 29, 2017
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Publication number: 20170105856
    Abstract: A scaffold includes a marker connected to a strut. The marker is retained within the strut by a tongue-and-groove connection. The marker is attached to the strut by a process that includes pressing a non-circular marker into a rectangular hole of the scaffold strut. The strut sidewalls are restrained to produce the tongue and groove connection.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 20, 2017
    Inventors: Ryan Vaughan, Matthew J. Chludzinski, John A. Simpson
  • Publication number: 20160311061
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Application
    Filed: July 1, 2016
    Publication date: October 27, 2016
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Patent number: 9393134
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 19, 2016
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Publication number: 20140155985
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Application
    Filed: February 3, 2014
    Publication date: June 5, 2014
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Patent number: 8679394
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 25, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Patent number: 8419464
    Abstract: A substrate structure is provided, the substrate structure comprising: a molded substrate located within a connector body of a coaxial cable connector and an electrical structure mechanically connected to the molded substrate. The electrical structure is located in a position that is external to a signal path of a radio frequency (RF) signal flowing through the coaxial cable connector. The electrical structure may form a sensing circuit configured to sense physical parameters such as a condition of the RF electrical signal flowing through the connector or a presence of moisture in the connector.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: April 16, 2013
    Assignees: PPC Broadband, Inc., Rochester Institute of Technology
    Inventors: Noah Montena, Robert Bowman, Ryan Vaughan
  • Publication number: 20110307050
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen
  • Publication number: 20110130034
    Abstract: A substrate structure is provided, the substrate structure comprising: a molded substrate located within a connector body of a coaxial cable connector and an electrical structure mechanically connected to the molded substrate. The electrical structure is located in a position that is external to a signal path of a radio frequency (RF) signal flowing through the coaxial cable connector.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 2, 2011
    Applicants: JOHN MEZZALINGUA ASSOCIATES INC., ROCHESTER INSTITUTE OF TECHNOLOGY
    Inventors: Noah Montena, Robert Bowman, Ryan Vaughan
  • Patent number: 7194888
    Abstract: A method of vehicle suspension testing includes conducting actual road testing of a vehicle including collecting data, and generating a drive file from the collected data for road test simulation. A vehicle suspension parameter is changed to result in a changed vehicle. Initial simulated road testing of the changed vehicle is conducted using the drive file, and results from the simulated and actual road testing are compared using acceptability criteria to determine whether to conduct further actual road testing of the changed vehicle before conducting further simulated road testing of the changed vehicle in response to the changed suspension parameter. Further simulated road testing of the changed vehicle is conducted if the acceptability criteria are met. Otherwise, further actual road testing of the changed vehicle is first conducted to develop a new drive file for use with additional simulated road testing of the changed vehicle.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: March 27, 2007
    Assignee: DaimlerChrysler Corporation
    Inventors: Mikhail Temkin, Ryan A Vaughan, Yung-Li Lee