Patents by Inventor Ryan W. Snell

Ryan W. Snell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11993568
    Abstract: Multi-reactor systems with aromatization reactor vessels containing a catalyst with low surface area and pore volume, followed in series by aromatization reactor vessels containing a catalyst with high surface area and pore volume, are disclosed. Related reforming methods using the different aromatization catalysts also are described.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: May 28, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Gabriela D. Alvez-Manoli, Xianghong Hao
  • Patent number: 11932817
    Abstract: The present disclosure generally relates to systems, methods, and processes for catalytic hydrocarbon reformation.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: March 19, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Vincent D. McGahee
  • Publication number: 20240058779
    Abstract: The present disclosure relates to the aromatization of hydrocarbons with an aromatization catalyst, including methods of aromatization comprising the use of a continuous catalyst regeneration type reformer.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 22, 2024
    Applicant: Chevron Phlillps Chemical Company LP
    Inventors: Ryan W. Snell, Scott Morrison, Troy Bretz
  • Publication number: 20240034699
    Abstract: The present disclosure relates to the integration of systems and methods associated with steam cracking, oligomerization reactions, hydrogenation reactions, and aromatization reactions for the production of benzene via the hydrogenation of oligomers produced from ethylene. In some aspects, the disclosed systems and methods utilize one or more of an oligomerization process, a hydrotreating process, and an aromatization process for producing a benzene comprising effluent. In further aspects, the systems and methods disclosed herein utilize one or more selective oligomerization catalyst systems.
    Type: Application
    Filed: July 25, 2023
    Publication date: February 1, 2024
    Inventors: Steven M. Bischof, Gregory G. Hendrickson, Uriah J. Kilgore, Bruce E. Kreischer, Scott G. Morrison, Ryan W. Snell, Orson L. Sydora
  • Publication number: 20240010584
    Abstract: Disclosed is oligomerization of ethylene to form 1-hexene in combination with aromatization of the 1-hexene formed by oligomerization, to form benzene.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 11, 2024
    Inventors: Ryan W. Snell, Xianghong Hao, Brook L. Small, Bruce E. Kreisher, Scott G. Morrison, Gregory G. Hendrickson
  • Patent number: 11713424
    Abstract: A process for operating a reforming system by operating a reforming section containing a plurality of reactors, wherein each of the plurality of reactors containing a reforming catalyst capable of catalyzing the conversion of at least a portion of the hydrocarbons in a treated hydrocarbon stream into a reactor effluent comprising aromatic hydrocarbons, and operating a sulfur guard bed (SGB) to remove sulfur and sulfur-containing hydrocarbons from a hydrocarbon feed to provide the treated hydrocarbon stream, where the SGB contains at least a layer of a SGB catalyst comprising the same catalyst as the reforming catalyst, and where each reactor of the plurality of reactors within the reforming section may be operated at a higher operating temperature than an operating temperature of the SGB. A system for carrying out the process is also provided.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 1, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Ryan W. Snell, Scott G. Morrison, Vincent D. McGahee, Xianghong Hao, Gabriela Alvez-Manoli
  • Patent number: 11577230
    Abstract: Provided herein are catalyst supports, catalyst systems, and methods for making catalyst supports, catalyst systems, and performing chemical reactions with the catalyst systems. The catalyst supports include a zeolite and a binder including non-sodium counterions, such as ammonium counterions and/or potassium counterions. The catalyst systems include the catalyst supports and a catalytic material. The catalyst systems may be used to perform chemical reactions, including reactions of one or more hydrocarbons.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: February 14, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventor: Ryan W. Snell
  • Patent number: 11529617
    Abstract: Provided herein are catalyst supports, catalyst systems, and methods for making catalyst supports, catalyst systems, and performing chemical reactions with the catalyst systems. The catalyst supports include a zeolite and a binder including non-sodium counterions, such as ammonium counterions and/or potassium counterions. The catalyst systems include the catalyst supports and a catalytic material. The catalyst systems may be used to perform chemical reactions, including reactions of one or more hydrocarbons.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: December 20, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventor: Ryan W. Snell
  • Publication number: 20220355279
    Abstract: Provided herein are catalyst supports, catalyst systems, and methods for making catalyst supports, catalyst systems, and performing chemical reactions with the catalyst systems. The catalyst supports include a zeolite and a binder including non-sodium counterions, such as ammonium counterions and/or potassium counterions. The catalyst systems include the catalyst supports and a catalytic material. The catalyst systems may be used to perform chemical reactions, including reactions of one or more hydrocarbons.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 10, 2022
    Inventor: Ryan W. Snell
  • Patent number: 11311863
    Abstract: A process of making an aromatization catalyst comprising: (a) mixing a zeolite, a binder, and water to form a mixture; (b) extruding the mixture to form a green extrudate; (c) drying the green extrudate to form a dried green extrudate; (d) calcining the dried green extrudate to form a support, wherein calcining the dried green extrudate is the only calcination step in the process; (e) washing the support to form a washed support; (f) drying the washed support to form a dried washed support; (g) impregnating the dried washed support with a Group 8-10 transition metal compound and at least one halide-containing compound to form a metalized-halided material; and (h) vacuum drying the metalized-halided material to form a dried metalized-halided material which is the aromatization catalyst.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: April 26, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Gabriela Alvez-Manoli
  • Publication number: 20220048015
    Abstract: Provided herein are catalyst supports, catalyst systems, and methods for making catalyst supports, catalyst systems, and performing chemical reactions with the catalyst systems. The catalyst supports include a zeolite and a binder including non-sodium counterions, such as ammonium counterions and/or potassium counterions. The catalyst systems include the catalyst supports and a catalytic material. The catalyst systems may be used to perform chemical reactions, including reactions of one or more hydrocarbons.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 17, 2022
    Inventor: Ryan W. Snell
  • Patent number: 11142490
    Abstract: A process for hydrogenation of an aromatic hydrocarbon including introducing a hydrocarbon feed comprising the aromatic hydrocarbon, a hydrogen feed comprising hydrogen, and a hydrogenation catalyst into a hydrogenation reactor operable with a liquid phase and a gas phase to produce a hydrogenation product; removing a gas phase product stream comprising the hydrogenation product; withdrawing a portion of the liquid phase; subjecting the withdrawn portion to heat exchange to provide a reduced-temperature withdrawn portion; introducing the reduced-temperature withdrawn portion back into the hydrogenation reactor; and at least one of: (a) providing at least two heat exchangers to effect the subjecting of the withdrawn portion of the liquid phase to heat exchange; (b) separating a decomposition product of the hydrogenation catalyst, the hydrogenation catalyst, or both, from the withdrawn portion of the liquid phase prior to the heat exchange; and (c) reducing exposure of the hydrogenation catalyst to an oxygen-co
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: October 12, 2021
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Ryan W. Snell, Israel Garcia
  • Patent number: 11141718
    Abstract: Methods for producing supported catalysts containing a transition metal and a bound zeolite base are disclosed. These methods employ a step of washing the bound zeolite base in the presence of an alkali metal, prior to impregnating the bound zeolitic support with the transition metal. Alkali metals such as potassium and cesium may be used.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: October 12, 2021
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Ryan W. Snell, Xianghong Hao
  • Patent number: 11103856
    Abstract: A process of making an aromatization catalyst comprising: (a) mixing a zeolite, a binder, and water to form a mixture; (b) extruding the mixture to form a green extrudate; (c) drying the green extrudate to form a dried green extrudate; (d) calcining the dried green extrudate to form a support, wherein calcining the dried green extrudate is the only calcination step in the process; (e) washing the support to form a washed support; (f) drying the washed support to form a dried washed support; (g) impregnating the dried washed support with a Group 8-10 transition metal compound and at least one halide-containing compound to form a metalized-halided material; and (h) vacuum drying the metalized-halided material to form a dried metalized-halided material which is the aromatization catalyst.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: August 31, 2021
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Ryan W. Snell, Gabriela Alvez-Manoli
  • Publication number: 20200338532
    Abstract: A process of making an aromatization catalyst comprising: (a) mixing a zeolite, a binder, and water to form a mixture; (b) extruding the mixture to form a green extrudate; (c) drying the green extrudate to form a dried green extrudate; (d) calcining the dried green extrudate to form a support, wherein calcining the dried green extrudate is the only calcination step in the process; (e) washing the support to form a washed support; (f) drying the washed support to form a dried washed support; (g) impregnating the dried washed support with a Group 8-10 transition metal compound and at least one halide-containing compound to form a metalized-halided material; and (h) vacuum drying the metalized-halided material to form a dried metalized-halided material which is the aromatization catalyst.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Inventors: Ryan W. Snell, Gabriela Alvez-Manoli
  • Patent number: 10815431
    Abstract: Disclosed are a method and a system for producing bio-derived aromatic hydrocarbons from a renewable resource. More particularly, the disclosure provides for the co-location of a biomass reactor unit and an aromatization reactor unit to produce benzene from a renewable source such as plant mass. Hexane produced from cellulose in the biomass reactor unit can be converted to benzene in the aromatization reactor unit and hydrogen produced in the aromatization reactor unit can be used in the biomass reactor unit. Also described is the use of a mixture of bio-derived hexane produced from cellulose and naphtha in an aromatization process.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: October 27, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Ryan W. Snell
  • Publication number: 20200239387
    Abstract: Multi-reactor systems with aromatization reactor vessels containing a catalyst with low surface area and pore volume, followed in series by aromatization reactor vessels containing a catalyst with high surface area and pore volume, are disclosed. Related reforming methods using the different aromatization catalysts also are described.
    Type: Application
    Filed: April 15, 2020
    Publication date: July 30, 2020
    Inventors: Ryan W. Snell, Gabriela D. Alvez-Manoli, Xianghong Hao
  • Publication number: 20200239385
    Abstract: A process for hydrogenation of an aromatic hydrocarbon including introducing a hydrocarbon feed comprising the aromatic hydrocarbon, a hydrogen feed comprising hydrogen, and a hydrogenation catalyst into a hydrogenation reactor operable with a liquid phase and a gas phase to produce a hydrogenation product; removing a gas phase product stream comprising the hydrogenation product; withdrawing a portion of the liquid phase; subjecting the withdrawn portion to heat exchange to provide a reduced-temperature withdrawn portion; introducing the reduced-temperature withdrawn portion back into the hydrogenation reactor; and at least one of: (a) providing at least two heat exchangers to effect the subjecting of the withdrawn portion of the liquid phase to heat exchange; (b) separating a decomposition product of the hydrogenation catalyst, the hydrogenation catalyst, or both, from the withdrawn portion of the liquid phase prior to the heat exchange; and (c) reducing exposure of the hydrogenation catalyst to an oxygen-co
    Type: Application
    Filed: April 14, 2020
    Publication date: July 30, 2020
    Inventors: Ryan W. Snell, Israel Garcia
  • Patent number: 10669217
    Abstract: A process for hydrogenation of an aromatic hydrocarbon including introducing a hydrocarbon feed comprising the aromatic hydrocarbon, a hydrogen feed comprising hydrogen, and a hydrogenation catalyst into a hydrogenation reactor operable with a liquid phase and a gas phase to produce a hydrogenation product; removing a gas phase product stream comprising the hydrogenation product; withdrawing a portion of the liquid phase; subjecting the withdrawn portion to heat exchange to provide a reduced-temperature withdrawn portion; introducing the reduced-temperature withdrawn portion back into the hydrogenation reactor; and at least one of: (a) providing at least two heat exchangers to effect the subjecting of the withdrawn portion of the liquid phase to heat exchange; (b) separating a decomposition product of the hydrogenation catalyst, the hydrogenation catalyst, or both, from the withdrawn portion of the liquid phase prior to the heat exchange; and (c) reducing exposure of the hydrogenation catalyst to an oxygen-co
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: June 2, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Israel Garcia
  • Patent number: 10662128
    Abstract: Multi-reactor systems with aromatization reactor vessels containing a catalyst with low surface area and pore volume, followed in series by aromatization reactor vessels containing a catalyst with high surface area and pore volume, are disclosed. Related reforming methods using the different aromatization catalysts also are described.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: May 26, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Gabriela D. Alvez-Manoli, Xianghong Hao