Patents by Inventor Ryan William Apperson

Ryan William Apperson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220193433
    Abstract: Systems, devices, and methods for detecting and addressing irregular motion to improve defibrillation shock recommendations are described. In an example method performed by a medical device, an electrocardiogram (ECG) of an individual receiving chest compressions is detected. In addition, irregular motion of the individual is detected. If a magnitude of the irregular motion is greater than or equal to a threshold, a remedial action is performed. In some examples, the medical device refrains from generating a recommendation indicating whether the ECG includes a shockable rhythm and/or whether a defibrillation shock is recommended. In some instances, the medical device outputs the recommendation with a certainty of the recommendation. In some cases, the medical device outputs a warning and generates the recommendation in response to receiving an input signal indicating a manual override.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 23, 2022
    Inventors: Fred W. Chapman, Ryan William Apperson, Steven Barry Duke, Michelle Liu, Thangeswaran Natarajan, Daniel W. Piraino, Tyson G. Taylor, Robert G. Walker
  • Publication number: 20220193431
    Abstract: Defibrillators with enhanced functionality during cardiopulmonary resuscitation (CPR) periods are described. The enhancements include predicting a length of a charging period of a capacitor of the medical device so that capacitor is shock charged at the end of the CPR period. The enhancements also include re-assessing an electrocardiogram (ECG) signal for continued presence of a shockable rhythm during the CPR period and before administration of a defibrillation shock. Together the enhancements can improve the timing and recommended administration of defibrillation therapy.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 23, 2022
    Inventors: Fred W. Chapman, Ryan William Apperson, Dale R. Beuning, Steven Barry Duke, Thangeswaran Natarajan, Daniel W. Piraino, Mark Rutzer, David B. Stewart, Tyson G. Taylor
  • Patent number: 10926099
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 23, 2021
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20190381330
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: December 21, 2018
    Publication date: December 19, 2019
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: 10159846
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 25, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: 10118048
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: November 6, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20170021183
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 9457197
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 4, 2016
    Assignee: Physio-Control, Inc.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 8862227
    Abstract: Embodiments of the present concept are directed to external defibrillators that include an electrode connection port having multiple connection options, and include a detection device to determine an electrode connection configuration so as to provide an appropriate electrical shock to a patient. The detection device detects the electrode connection configuration of a plug connector for connected electrodes to determine if the plug connector is in an adult orientation or a pediatric orientation. The external defibrillator is configured to a deliver an electrical shock with less energy when the pediatric orientation is detected rather than the adult orientation.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: October 14, 2014
    Assignee: Physio-Control, Inc.
    Inventors: Ryan William Apperson, John Carlton Daynes, Kelly Schneiderman
  • Publication number: 20130304145
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20130304146
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20130218220
    Abstract: Embodiments of the present concept are directed to external defibrillators that include an electrode connection port having multiple connection options, and include a detection device to determine an electrode connection configuration so as to provide an appropriate electrical shock to a patient. The detection device detects the electrode connection configuration of a plug connector for connected electrodes to determine if the plug connector is in an adult orientation or a pediatric orientation. The external defibrillator is configured to a deliver an electrical shock with less energy when the pediatric orientation is detected rather than the adult orientation.
    Type: Application
    Filed: March 22, 2013
    Publication date: August 22, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Ryan William Apperson, John Carlton Daynes, Kelly Schneiderman
  • Patent number: 8412322
    Abstract: Embodiments of the present concept are directed to external defibrillators that include an electrode connection port having multiple connection options, and include a detection device to determine an electrode connection configuration so as to provide an appropriate electrical shock to a patient. The detection device detects the electrode connection configuration of a plug connector for connected electrodes to determine if the plug connector is in an adult orientation or a pediatric orientation. The external defibrillator is configured to a deliver an electrical shock with less energy when the pediatric orientation is detected rather than the adult orientation.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: April 2, 2013
    Assignee: Physio-Control, Inc.
    Inventors: Ryan William Apperson, John Carlton Daynes, Kelly Schneiderman
  • Publication number: 20120185006
    Abstract: Embodiments of the present concept are directed to external defibrillators that include an electrode connection port having multiple connection options, and include a detection device to determine an electrode connection configuration so as to provide an appropriate electrical shock to a patient. The detection device detects the electrode connection configuration of a plug connector for connected electrodes to determine if the plug connector is in an adult orientation or a pediatric orientation. The external defibrillator is configured to a deliver an electrical shock with less energy when the pediatric orientation is detected rather than the adult orientation.
    Type: Application
    Filed: July 25, 2011
    Publication date: July 19, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Ryan William Apperson, John Carlton Daynes, Kelly Schneiderman