Patents by Inventor Ryan Wyszynski

Ryan Wyszynski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11517242
    Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P-wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: December 6, 2022
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan Wyszynski
  • Patent number: 11522919
    Abstract: This disclosure is directed to devices, systems, and techniques for establishing a secure connection between two or more devices. In some examples, a device is configured for wireless communication. The device comprises signal reception circuitry configured to receive communications transmitted according to at least a first communication protocol, communication circuitry configured for wireless communication according to at least a second communication protocol, and processing circuitry electrically coupled to the signal reception circuitry and the communication circuitry. The processing circuitry is configured to receive, via the signal reception circuitry, a first signal according to the first communication protocol. In response to receiving the first signal, the processing circuitry is further configured to transmit, via the communication circuitry, a second signal according to the second communication protocol and establish a secure link according to the second communication protocol.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: December 6, 2022
    Assignee: Medtronic, Inc.
    Inventors: Hyun J Yoon, Bo Zhang, Robert Michael Ecker, Ryan Wyszynski, Joseph C Green, David J. Peichel, Sudar Shields, Nicholas C. Wine, Drew J. Thwaites
  • Publication number: 20200252436
    Abstract: This disclosure is directed to devices, systems, and techniques for establishing a secure connection between two or more devices. In some examples, a device is configured for wireless communication. The device comprises signal reception circuitry configured to receive communications transmitted according to at least a first communication protocol, communication circuitry configured for wireless communication according to at least a second communication protocol, and processing circuitry electrically coupled to the signal reception circuitry and the communication circuitry. The processing circuitry is configured to receive, via the signal reception circuitry, a first signal according to the first communication protocol. In response to receiving the first signal, the processing circuitry is further configured to transmit, via the communication circuitry, a second signal according to the second communication protocol and establish a secure link according to the second communication protocol.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Inventors: Hyun J. Yoon, Bo Zhang, Robert Michael Ecker, Ryan Wyszynski, Joseph C. Green, David J. Peichel, Sudar Shields, Nicholas C. Wine, Drew J. Thwaites
  • Publication number: 20200100694
    Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P-wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Inventors: Shantanu SARKAR, Daniel L. HANSEN, Grant A. NEITZELL, Jerry D. REILAND, Ryan WYSZYNSKI
  • Patent number: 10492706
    Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: December 3, 2019
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan Wyszynski
  • Patent number: 9936890
    Abstract: An implantable medical device and method for determining an atrial arrhythmia event that includes a cardiac sensing device comprising a housing having circuitry positioned therein, a plurality of electrodes electrically coupled to the circuitry to sense a cardiac signal, and a processor configured to generate an initial detection of an atrial arrhythmia event in response to an atrial arrhythmia threshold, determine whether a P-wave occurs during the initial detection, determine an adaptive threshold in response to the P-wave being detected, adjust the atrial arrhythmia threshold in response to the adaptive threshold, and generate a subsequent initial detection of an atrial arrhythmia event using the adjusted atrial arrhythmia threshold.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 10, 2018
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Daniel L Hansen, Grant A Neitzell, Jerry D Reiland, Ryan Wyszynski
  • Publication number: 20180028082
    Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.
    Type: Application
    Filed: February 18, 2016
    Publication date: February 1, 2018
    Applicant: Medtronic, Inc.
    Inventors: Shantanu SARKAR, Daniel L. HANSEN, Grant A. NEITZELL, Jerry D. REILAND, Ryan WYSZYNSKI
  • Patent number: 9744364
    Abstract: A system including a programmable implantable monitoring device and a programmer for programming the device and a method of use thereof. The programmer may be configured to transmit programming commands responsive to entry of a reason for monitoring to the implantable device including a prioritization of an arrhythmia storage criterion. The implantable may be configured to thereafter store and/or transmit records of the arrhythmia according to the prioritization. The programmer may be configured to transmit the patient's age to the implantable device and the implantable may be configured to thereafter apply arrhythmia detection criteria based upon the patient's age.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: August 29, 2017
    Assignee: Medtronic, Inc.
    Inventors: Charles R Gordon, Paul G Krause, Grant Alan Neitzell, Shantanu Sarkar, Ryan Wyszynski
  • Patent number: 9603543
    Abstract: A method and implantable medical device for determining an atrial arrhythmia event that includes sensing a cardiac signal, determining an atrial arrhythmia score for identifying the arrhythmia event in response to the sensed cardiac signal, determining a sensing window in response to the sensed cardiac signal, the sensing window having a first portion and a second portion, determining signal characteristics of the sensed cardiac signal within the first portion and within the second portion, determining whether the sensed cardiac signal within the first portion and within the second portion corresponds to a P-wave in response to the determined signal characteristics, determining whether a signal to noise ratio of the sensed cardiac signal within the first portion and the second portion of the sensing window is satisfied, determining whether to update the arrhythmia score in response to the determined P-wave and the determined signal to noise ratio, and determining whether to delivery an arrhythmia therapy in r
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: March 28, 2017
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Daniel L Hansen, Grant A Neitzell, Jerry D Reiland, Ryan Wyszynski
  • Publication number: 20160235992
    Abstract: A method and implantable medical device for determining an atrial arrhythmia event that includes sensing a cardiac signal, determining an atrial arrhythmia score for identifying the arrhythmia event in response to the sensed cardiac signal, determining a sensing window in response to the sensed cardiac signal, the sensing window having a first portion and a second portion, determining signal characteristics of the sensed cardiac signal within the first portion and within the second portion, determining whether the sensed cardiac signal within the first portion and within the second portion corresponds to a P-wave in response to the determined signal characteristics, determining whether a signal to noise ratio of the sensed cardiac signal within the first portion and the second portion of the sensing window is satisfied, determining whether to update the arrhythmia score in response to the determined P-wave and the determined signal to noise ratio, and determining whether to delivery an arrhythmia therapy in r
    Type: Application
    Filed: April 24, 2015
    Publication date: August 18, 2016
    Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan Wyszynski
  • Publication number: 20160235317
    Abstract: An implantable medical device and method for determining an atrial arrhythmia event that includes a cardiac sensing device comprising a housing having circuitry positioned therein, a plurality of electrodes electrically coupled to the circuitry to sense a cardiac signal, and a processor configured to generate an initial detection of an atrial arrhythmia event in response to an atrial arrhythmia threshold, determine whether a P-wave occurs during the initial detection, determine an adaptive threshold in response to the P-wave being detected, adjust the atrial arrhythmia threshold in response to the adaptive threshold, and generate a subsequent initial detection of an atrial arrhythmia event using the adjusted atrial arrhythmia threshold.
    Type: Application
    Filed: October 29, 2015
    Publication date: August 18, 2016
    Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan Wyszynski
  • Publication number: 20150088216
    Abstract: A system including a programmable implantable monitoring device and a programmer for programming the device and a method of use thereof. The programmer may be configured to transmit programming commands responsive to entry of a reason for monitoring to the implantable device including a prioritization of an arrhythmia storage criterion. The implantable may be configured to thereafter store and/or transmit records of the arrhythmia according to the prioritization. The programmer may be configured to transmit the patient's age to the implantable device and the implantable may be configured to thereafter apply arrhythmia detection criteria based upon the patient's age.
    Type: Application
    Filed: April 9, 2014
    Publication date: March 26, 2015
    Inventors: Charles R Gordon, Paul G Krause, Grant Alan Neitzell, Shantanu Sarkar, Ryan Wyszynski
  • Patent number: D761434
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: July 12, 2016
    Assignee: Medtronic, Inc.
    Inventors: Stephen Nelson, Gerald Herman, Patrick Gerrells, David Peichel, John Pohl, David Walsh, Ryan Wyszynski, Daniel M. Gelfman