Patents by Inventor Ryo Ogawara

Ryo Ogawara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10578750
    Abstract: The present invention identifies ? decay and other events included in the emission of an LaBr3 scintillator and only collects ? ray events. An LaBr3 scintillation detector is provided with an LaBr3 scintillator 10, a photomultiplier tube 12, an oscilloscope 14, and a computer 18. The computer 18 detects a peak value Vp and a total charge amount Qtotal of a voltage waveform signal and calculates an error propagation expression function for a ratio of the peak value Vp to the total charge amount Qtotal. This error propagation expression function is used as a threshold function for identifying and removing ? decay events. The ? decay events are identified from the peak value Vp and total charge amount Qtotal, which are measurement values that can be measured in real time.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: March 3, 2020
    Assignee: National University Corporation Hokkaido University
    Inventors: Masayori Ishikawa, Ryo Ogawara
  • Patent number: 10345457
    Abstract: A scintillation light detecting device distinguishes between signals from scintillator elements. The device includes a scintillator array. In the scintillator array, the scintillator elements have mutually different decay time constants for emitted light generated as a result of an incident radiation event. A photomultiplier tube that receives light output from the scintillator elements and converts the light into an electrical signal. In relation to the event, an arithmetic processing device detects a peak value and an integrated charge quantity in a voltage waveform of the electrical signal from the photomultiplier tube, and identifies the scintillator element in the scintillator array to which the electrical signal, resulting from the incidence of radiation onto the scintillator element, is attributable, in accordance with a ratio between the detected peak value and integrated electric charge quantity.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: July 9, 2019
    Assignee: National University Corporation Hokkaido University
    Inventors: Masayori Ishikawa, Ryo Ogawara
  • Publication number: 20180252823
    Abstract: A scintillation light detecting device distinguishes between signals from scintillator elements. The device includes a scintillator array. In the scintillator array, the scintillator elements have mutually different decay time constants for emitted light generated as a result of an incident radiation event. A photomultiplier tube that receives light output from the scintillator elements and converts the light into an electrical signal. In relation to the event, an arithmetic processing device detects a peak value and an integrated charge quantity in a voltage waveform of the electrical signal from the photomultiplier tube, and identifies the scintillator element in the scintillator array to which the electrical signal, resulting from the incidence of radiation onto the scintillator element, is attributable, in accordance with a ratio between the detected peak value and integrated electric charge quantity.
    Type: Application
    Filed: September 1, 2016
    Publication date: September 6, 2018
    Inventors: Masayori Ishikawa, Ryo Ogawara
  • Publication number: 20180149760
    Abstract: The present invention identifies ? decay and other events included in the emission of an LaBr3 scintillator and only collects ? ray events. An LaBr3 scintillation detector is provided with an LaBr3 scintillator 10, a photomultiplier tube 12, an oscilloscope 14, and a computer 18. The computer 18 detects a peak value Vp and a total charge amount Qtotal of a voltage waveform signal and calculates an error propagation expression function for a ratio of the peak value Vp to the total charge amount Qtotal. This error propagation expression function is used as a threshold function for identifying and removing ? decay events. The ? decay events are identified from the peak value Vp and total charge amount Qtotal, which are measurement values that can be measured in real time.
    Type: Application
    Filed: February 10, 2016
    Publication date: May 31, 2018
    Applicant: National University Corporation Hokkaido University
    Inventors: Masayori Ishikawa, Ryo Ogawara