Patents by Inventor RYO OSABE

RYO OSABE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220196378
    Abstract: The problem to be overcome by the present disclosure is to reduce harmonic components included in output signals. A magnetic sensor includes a detecting magnetoresistance element and a canceling magnetoresistance element. A tilt angle formed by a magnetic sensing direction of the canceling magnetoresistance element with respect to a magnetic sensing direction of the detecting magnetoresistance element falls within a predetermined range. The predetermined range is defined by reference to either n×?/3 or n×?/3+?/2, where ? is an angle of rotation of a rotator corresponding to one cycle of a fundamental harmonic included in output signals of the detecting magnetoresistance element and n is a natural number equal to or greater than 1.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 23, 2022
    Inventors: Ryo OSABE, Hideaki FUJIURA, Yoshiyuki SAITO
  • Patent number: 10935396
    Abstract: A magnetic sensor includes a magneto-resistive element configured to output a signal and a detection circuit configured to receive the signal. The detection circuit includes a regulator configured to supply a potential to the magneto-resistive element, a first current path configured to electrically connect the magneto-resistive element to the regulator, a second current path, a switch, and a diagnostic circuit connected to the second current path. The second current path includes, and is configured to electrically connect the magneto-resistive element to the regulator via the resistor. The switch is configured to select one of the first current path and the second current path, and electrically connect the magneto-resistive element to the regulator via the selected one of the first current path and the second current path.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: March 2, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takuya Tomida, Takeshi Uemura, Hideaki Fujiura, Ryo Osabe
  • Patent number: 10890464
    Abstract: A rotation detecting device includes first and second magnetic detection elements that output first and second signals and a detection circuit having the first and second signals input thereto. The detection circuit includes an automatic correction circuit that performs generating and updating of a correction value for correcting the and second signals. The automatic correction circuit is configured to stop the generating or the updating of the correction value in at least one of a case where a rotation direction of an object is changed to a reverse rotation direction from a normal rotation direction and a case where a rotation direction of the object is changed to the normal rotation direction from the reverse rotation direction.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: January 12, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Ryo Osabe, Hideaki Fujiura, Takeshi Uemura, Takuya Tomida
  • Publication number: 20200158536
    Abstract: A magnetic sensor includes a magneto-resistive element configured to output a signal and a detection circuit configured to receive the signal. The detection circuit includes a regulator configured to supply a potential to the magneto-resistive element, a first current path configured to electrically connect the magneto-resistive element to the regulator, a second current path, a switch, and a diagnostic circuit connected to the second current path. The second current path includes, and is configured to electrically connect the magneto-resistive element to the regulator via the resistor. The switch is configured to select one of the first current path and the second current path, and electrically connect the magneto-resistive element to the regulator via the selected one of the first current path and the second current path.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: Takuya TOMIDA, Takeshi UEMURA, Hideaki FUJIURA, Ryo OSABE
  • Patent number: 10634516
    Abstract: A rotation detecting device is configured to be used with a switch and detect rotation of a rotation shaft having a magnetic body attached thereto. The rotation detecting device includes a magneto-resistive element facing the magnetic body and outputting a first signal related to displacement of the magnetic body, a Hall element facing the magnetic body and outputting a second signal related to displacement of the magnetic body, and a detection circuit having the first and second signals input thereto. The detection circuit is configured to: output the first signal while the switch is turned on; detect rotation-number information corresponding to the number of rotations of the rotation shaft based on the second signal at a first time point at which the switch is turned off; store the rotation-number information; and output the stored rotation-number information at a second time point when the switch is turned on after the first time point.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: April 28, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Hideaki Fujiura, Takeshi Uemura, Ryo Osabe, Takuya Tomida
  • Publication number: 20200064416
    Abstract: The present disclosure provides a magnetic sensor with improved accuracy or reliability. The magnetic sensor includes a first magnetism detection element that outputs a first detection signal, a second magnetism detection element that outputs a second detection signal, and a detection circuit that receives the first and second detection signals. The detection circuit corrects the first detection signal for each section in a ( 1/16n) period of the first detection signal, when n is a natural number. With this configuration, the magnetic sensor has high accuracy or high reliability, and therefore is useful as, for example, a magnetic sensor used for detecting a steering angle and the like of a vehicle.
    Type: Application
    Filed: May 18, 2018
    Publication date: February 27, 2020
    Inventors: HIDEAKI FUJIURA, TAKUYA TOMIDA, RYO OSABE
  • Patent number: 10571298
    Abstract: A rotation detecting device includes first to fourth magneto-resistive elements that are provided on a first substrate to constitute a bridge circuit, a detection circuit provided on a second substrate, first to fourth wirings each connecting between the detection circuit and respective one of ends of the first to fourth magneto-resistive elements, first to fourth nodes provided on the second substrate, and first and second amplifiers provided on the second substrate. The first node combines signals on the first and second wirings. The second node combines signals on the third and fourth wirings. The first and second amplifiers amplify signals at the first and second nodes, respectively.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: February 25, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takuya Tomida, Takeshi Uemura, Hideaki Fujiura, Ryo Osabe
  • Publication number: 20190257671
    Abstract: A rotation detecting device includes first and second magnetic detection elements that output first and second signals and a detection circuit having the first and second signals input thereto. The detection circuit includes an automatic correction circuit that performs generating and updating of a correction value for correcting the and second signals. The automatic correction circuit is configured to stop the generating or the updating of the correction value in at least one of a case where a rotation direction of an object is changed to a reverse rotation direction from a normal rotation direction and a case where a rotation direction of the object is changed to the normal rotation direction from the reverse rotation direction.
    Type: Application
    Filed: March 13, 2017
    Publication date: August 22, 2019
    Inventors: RYO OSABE, HIDEAKI FUJIURA, TAKESHI UEMURA, TAKUYA TOMIDA
  • Publication number: 20190257669
    Abstract: A rotation detecting device is configured to be used with a switch and detect rotation of a rotation shaft having a magnetic body attached thereto. The rotation detecting device includes a magneto-resistive element facing the magnetic body and outputting a first signal related to displacement of the magnetic body, a Hall element facing the magnetic body and outputting a second signal related to displacement of the magnetic body, and a detection circuit having the first and second signals input thereto. The detection circuit is configured to: output the first signal while the switch is turned on; detect rotation-number information corresponding to the number of rotations of the rotation shaft based on the second signal at a first time point at which the switch is turned off; store the rotation-number information; and output the stored rotation-number information at a second time point when the switch is turned on after the first time point.
    Type: Application
    Filed: March 13, 2017
    Publication date: August 22, 2019
    Inventors: HIDEAKI FUJIURA, TAKESHI UEMURA, RYO OSABE, TAKUYA TOMIDA
  • Publication number: 20190257639
    Abstract: A rotation detecting device includes first to fourth magneto-resistive elements that are provided on a first substrate to constitute a bridge circuit, a detection circuit provided on a second substrate, first to fourth wirings each connecting between the detection circuit and respective one of ends of the first to fourth magneto-resistive elements, first to fourth nodes provided on the second substrate, and first and second amplifiers provided on the second substrate. The first node combines signals on the first and second wirings. The second node combines signals on the third and fourth wirings. The first and second amplifiers amplify signals at the first and second nodes, respectively.
    Type: Application
    Filed: March 13, 2017
    Publication date: August 22, 2019
    Inventors: TAKUYA TOMIDA, TAKESHI UEMURA, HIDEAKI FUJIURA, RYO OSABE
  • Patent number: 10119865
    Abstract: An infrared sensor, which achieves a low manufacturing cost, or has high sensitivity, or in which an increase in heat capacity is reduced, is provided. The infrared sensor includes a first infrared absorbing portion, an infrared sensing portion for sensing infrared rays based on infrared rays absorbed by the first infrared absorbing portion, and a plurality of protrusions including metal and disposed apart from each other on a surface of the first infrared absorbing portion. Since an absorption rate of infrared rays is improved, sensitivity can be improved, or an increase in heat capacity can be reduced.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: November 6, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Katsumi Kakimoto, Masaaki Saito, Yosuke Hagihara, Takafumi Okudo, Yoichi Nishijima, Ryo Osabe, Naoki Ushiyama, Sumio Akai, Yasufumi Shibata
  • Publication number: 20160153837
    Abstract: An infrared sensor, which achieves a low manufacturing cost, or has high sensitivity, or in which an increase in heat capacity is reduced, is provided. The infrared sensor includes a first infrared absorbing portion, an infrared sensing portion for sensing infrared rays based on infrared rays absorbed by the first infrared absorbing portion, and a plurality of protrusions including metal and disposed apart from each other on a surface of the first infrared absorbing portion. Since an absorption rate of infrared rays is improved, sensitivity can be improved, or an increase in heat capacity can be reduced.
    Type: Application
    Filed: May 30, 2014
    Publication date: June 2, 2016
    Inventors: KATSUMI KAKIMOTO, MASAAKI SAITO, YOSUKE HAGIHARA, TAKAFUMI OKUDO, YOICHI NISHIJIMA, RYO OSABE, NAOKI USHIYAMA, SUMIO AKAI, YASUFUMI SHIBATA
  • Publication number: 20160131683
    Abstract: A magnetic sensor has a first tube-shaped bias magnet and a first magnetic sensor element. The first tube-shaped bias magnet has a bottom face, a top face facing the bottom face, and an outer side surface and an inner side surface both located between the bottom face and the top face, and includes an N pole formed by magnetizing one of the bottom face and the top face and an S pole formed by magnetizing a remaining one of the bottom face and the top face. The first magnetic sensor element is located in an inner space surrounded by a plane including the bottom face, a plane including the top face, and the inner side surface. The magnetic sensor can detect intensity of an external magnetic field with high accuracy.
    Type: Application
    Filed: January 17, 2016
    Publication date: May 12, 2016
    Inventors: KAZUHIRO ONAKA, TAKASHI UMEDA, SHIGEHIRO YOSHIUCHI, RYO OSABE