Patents by Inventor Ryohei ONO

Ryohei ONO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210115839
    Abstract: An engine control apparatus includes an ignition control section and an injection control section. When partial compression ignition combustion is carried out, the ignition control section causes an ignition plug to carry out: main ignition in which a spark is generated in a late period of a compression stroke or an initial period of an expansion stroke to initiate the SI combustion; and preceding ignition in which the spark is generated at earlier timing than the main ignition. Also, when the partial compression ignition combustion is carried out, the injection control section causes the injector to inject fuel at such timing that the fuel exists in a cylinder at an earlier time point than the preceding ignition. Energy of the preceding ignition is set to be higher when an engine speed is high than when the engine speed is low.
    Type: Application
    Filed: April 23, 2019
    Publication date: April 22, 2021
    Inventors: Kota MATSUMOTO, Tomonori URUSHIHARA, Keiji MARUYAMA, Masanari SUEOKA, Ryohei ONO, Yuji HARADA, Toru MIYAMOTO, Atsushi INOUE, Tatsuhiro TOKUNAGA, Takuya OHURA, Yusuke KAWAI, Tomohiro NISHIDA, Keita ARAI, Yodai YAMAGUCHI
  • Patent number: 10968859
    Abstract: Control is performed so as to occur SPCCI combustion in which, after an air-fuel mixture in a first area of a combustion chamber that includes an electrode portion of an ignition device is burned by receiving ignition energy, an air-fuel mixture formed in a second area located on an outer periphery of the first area is self-ignited. Control is also performed such that, in a high load operation region of an SPCCI combustion execution region, an air-fuel ratio in the entire combustion chamber becomes richer than a stoichiometric air-fuel ratio and that an air-fuel ratio of the air-fuel mixture in the first area becomes leaner than an air-fuel ratio of the air-fuel mixture in the second area.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: April 6, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Noriyuki Ota, Ryohei Ono
  • Publication number: 20210031277
    Abstract: According to one implementation, a drill includes the first cutting edges, the second cutting edges and a deflection reducer. The first cutting edges drill a prepared hole to a workpiece. The first cutting edges are formed in a tip side of the drill. The first point angle and each first relief angle of the first cutting edges continuously or intermittently decrease from the tip side toward a rear end side of the drill. The second cutting edges ream the prepared hole. The second cutting edges are formed at positions away in the rear end side from the first cutting edges. The second cutting edges have the second relief angles at a maximum diameter position. The deflection reducer reduces deflection of the second cutting edges. The deflection reducer is formed between the first cutting edges and the second cutting edges. The deflection reducer is inserted into the prepared hole.
    Type: Application
    Filed: April 14, 2020
    Publication date: February 4, 2021
    Inventors: Masao WATANABE, Ryohei ONO, Tatsuo NAKAHATA, Hiroyuki SUGAWARA
  • Publication number: 20200378749
    Abstract: According to one implementation, a positioning device positions a hole inspection device to a hole formed in an object. The positioning device includes a guide unit and a detachable member. The guide unit has a positioning hole and a flat supporting face. A cylindrical or columnar positioning member is slidably inserted into the positioning hole. At least a tip of the positioning member is inserted into the hole. A central axis of the positioning hole and a reference line of the hole inspection device for measuring or inspecting the feature of the hole lie on a same straight line. The guide unit is set by contacting the flat supporting face to a surface of the object surrounding the hole or a flat surface of a jig placed on the object. The detachable member attaches a part or all of the guide unit to the hole inspection device.
    Type: Application
    Filed: April 3, 2020
    Publication date: December 3, 2020
    Applicant: SUBARU CORPORATION
    Inventors: Ryohei ONO, Tatsuo NAKAHATA, Masao WATANABE
  • Patent number: 10830186
    Abstract: A premixed compression ignition engine system includes an engine, a fuel injector, a water injector, and a controller. The controller conducts: a compression-stroke mid-period injection that causes a fuel injector to inject fuel to form a fuel-air mixture in a surrounding space of a combustion chamber; a compression top-dead-center injection that causes the fuel injector to inject fuel to form a fuel-air mixture in the central space of the combustion chamber after the compression-stroke mid-period injection; and a water injection that causes a water injector to inject water to the surrounding space of the combustion chamber at a timing from commencement of the compression-stroke mid-period injection to commencement of the compression top-dead-center injection.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: November 10, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Tohru Hokazono, Kota Maekawa, Yoshihisa Nakamoto, Masaharu Marumoto, Yusuke Koike, Ryohei Ono
  • Patent number: 10823040
    Abstract: An exhaust gas control system includes an upstream purification device disposed in an exhaust passage of the internal combustion engine, a downstream purification device disposed in a portion of the exhaust passage downstream from the upstream purification device, a fuel addition valve disposed in a portion of the exhaust passage upstream from the upstream purification device, and a urea addition valve disposed in a portion of the exhaust passage between the upstream purification device and the downstream purification device, and a cooling device. The cooling device is configured such that refrigerant cools the fuel addition valve first and then cools the urea addition valve subsequent to the fuel addition valve.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: November 3, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinya Asaura, Masaaki Sato, Ryohei Ono, Yuji Miyoshi
  • Publication number: 20200298359
    Abstract: According to one implementation, a tool feeding mechanism for a handheld tool rotating device, having a holder and a first air motor, includes a coupler, a fixing member, a moving mechanism and a second air motor. The holder chucks and holds a rotating tool. The first air motor rotates the holder. The tool feeding mechanism is attached to the tool rotating device. The coupler is attached to the tool rotating device. The fixing member is attached directly or indirectly to a workpiece of hole processing using the rotating tool. The moving mechanism moves the coupler relatively to the fixing member in a tool axis direction. The second air motor powers the moving mechanism.
    Type: Application
    Filed: January 3, 2020
    Publication date: September 24, 2020
    Applicant: SUBARU CORPORATION
    Inventors: Masao WATANABE, Tatsuo NAKAHATA, Ryohei ONO
  • Patent number: 10753249
    Abstract: An exhaust emission control device for an internal combustion engine according to the present disclosure includes an exhaust emission control catalyst provided in an exhaust passage in an internal combustion engine and divided into a preceding catalyst and a succeeding catalyst, and a heating device provided in the exhaust passage between the preceding catalyst and the succeeding catalyst. The exhaust emission control catalyst is divided into the preceding catalyst and the succeeding catalyst so that a ratio of a capacity of the preceding catalyst to a total displacement of the internal combustion engine is from 0.3 to 1.5.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: August 25, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryohei Ono, Masaaki Sato, Katsuhiro Ito, Akira Mikami, Kazuhiro Umemoto, Daichi Imai
  • Publication number: 20200261990
    Abstract: According to one implementation, a rotary cutting tool includes: a body without a back taper; and a cutting edge part integrated with the body. The body has a flow path of a cutting oil inside the body. The cutting edge part has a first supply port that supplies the cutting oil toward a workpiece. The body has at least one second supply port that supplies the cutting oil to a clearance formed between a bush for positioning and the body. The bush is used by being inserted in the body.
    Type: Application
    Filed: January 13, 2020
    Publication date: August 20, 2020
    Applicant: SUBARU CORPORATION
    Inventors: Ryohei ONO, Masao WATANABE, Tatsuo NAKAHATA
  • Publication number: 20200180045
    Abstract: According to one implementation, a drill includes: a body without a back taper and a cutting edge part. The body has a flow path of a cutting oil. The flow path is branched to first and second flow paths inside the body. The cutting edge part has a first supply port that supplies the cutting oil toward a workpiece. The first supply port is an outlet of the first flow path. The body has a second supply port that supplies the cutting oil to a clearance between the body and a bush for positioning the body. The second supply port is an outlet of the second flow path. The second flow path has a pressure loss by which the cutting oil is not scattered from the second supply port in a radial direction of the body but exuded from the second supply port.
    Type: Application
    Filed: November 1, 2019
    Publication date: June 11, 2020
    Applicant: SUBARU CORPORATION
    Inventors: Ryohei ONO, Masao WATANABE, Tatsuo NAKAHATA
  • Patent number: 10677125
    Abstract: An exhaust gas purification apparatus for an internal combustion engine includes the adsorbent, the catalyst and the heat generating element, wherein in cases where the residual capacity of the battery is smaller than a first predetermined value required for raising the temperature of the catalyst to an activation temperature thereof, and in cases where the residual capacity of the battery is larger than a second predetermined value which is smaller than the first predetermined value and which is required for raising the temperature of the adsorbent to a predetermined temperature at which the adsorbent exhibits adsorption performance required at the time of starting of the internal combustion engine, an amount of electric power to be supplied to the heat generating element from the battery is adjusted such that the temperature of the adsorbent becomes the predetermined temperature.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: June 9, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryohei Ono, Masaaki Sato, Katsuhiro Ito, Akira Mikami, Kazuhiro Umemoto, Daichi Imai
  • Patent number: 10648391
    Abstract: A controller estimates a first estimated adsorption amount which is an amount of adsorption of ammonia in the SCR catalyst at the time when the SCR catalyst is assumed to be in a predetermined abnormal state, estimates a second estimated adsorption amount at the time when the SCR catalyst is assumed to be in a predetermined normal state, calculates a first slip development temperature based on the first estimated adsorption amount, and calculates a second slip development temperature based on the second estimated adsorption amount. The controller, when carrying out an abnormality diagnosis based on a concentration of ammonia in an exhaust gas at the downstream side of the SCR catalyst, carries out diagnostic temperature control so as to control the temperature of the SCR catalyst to a temperature which is equal to or more than the first slip development temperature and is less than the second slip development temperature.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: May 12, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryohei Ono, Masaaki Sato, Katsuhiro Ito, Akira Mikami, Kazuhiro Umemoto, Daichi Imai
  • Patent number: 10626786
    Abstract: Provided is an in-combustion chamber flow control device used in an engine having an intake passage connected to an intake opening formed in a ceiling surface of a combustion chamber, at an angle inclined with respect to a direction of an axis of a cylinder. This in-combustion chamber flow control device comprises a plasma actuator (28) disposed inside the combustion chamber (16). The plasma actuator comprises: a dielectric body (38) disposed along the ceiling surface (16a) of the combustion chamber, at a position closer to a center of the ceiling surface than the intake opening (18a); an exposed electrode (40) disposed on one side of the dielectric body facing the combustion chamber; and an embedded electrode (42) disposed on a side opposite to the exposed electrode across the dielectric body. The embedded electrode is disposed at a position closer to the intake opening than the exposed electrode.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 21, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Kenji Uchida, Takeshi Nagasawa, Ryohei Ono
  • Publication number: 20200040850
    Abstract: A premixed compression ignition engine system includes an engine, a fuel injector, a water injector, and a controller. The controller conducts: a compression-stroke mid-period injection that causes a fuel injector to inject fuel to form a fuel-air mixture in a surrounding space of a combustion chamber; a compression top-dead-center injection that causes the fuel injector to inject fuel to form a fuel-air mixture in the central space of the combustion chamber after the compression-stroke mid-period injection; and a water injection that causes a water injector to inject water to the surrounding space of the combustion chamber at a timing from commencement of the compression-stroke mid-period injection to commencement of the compression top-dead-center injection.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 6, 2020
    Inventors: Tohru Hokazono, Kota Maekawa, Yoshihisa Nakamoto, Masaharu Marumoto, Yusuke Koike, Ryohei Ono
  • Patent number: 10480438
    Abstract: Disclosed herein is a fuel injection control device for a direct injection engine including an engine body (engine 1) and a fuel injection control unit (engine controller 100). The fuel injection control unit injects a fuel in a predetermined injection mode into a combustion chamber (17) such that while the engine body is warm, an air-fuel mixture layer and a heat-insulating gas layer, surrounding the air-fuel mixture layer, are formed in the combustion chamber at a point in time when an air-fuel mixture ignites, and changes the injection mode of the fuel into the combustion chamber such that while the engine body is cold, the lower the temperature of the engine body is, the thinner the heat-insulating gas layer becomes.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: November 19, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Takeshi Nagasawa, Keiji Araki, Noriyuki Ota, Kenji Uchida, Ryohei Ono, Kiyotaka Sato, Hidefumi Fujimoto
  • Publication number: 20190345890
    Abstract: Control is performed so as to occur SPCCI combustion in which, after an air-fuel mixture in a first area of a combustion chamber that includes an electrode portion of an ignition device is burned by receiving ignition energy, an air-fuel mixture formed in a second area located on an outer periphery of the first area is self-ignited. Control is also performed such that, in a high load operation region of an SPCCI combustion execution region, an air-fuel ratio in the entire combustion chamber becomes richer than a stoichiometric air-fuel ratio and that an air-fuel ratio of the air-fuel mixture in the first area becomes leaner than an air-fuel ratio of the air-fuel mixture in the second area.
    Type: Application
    Filed: November 22, 2017
    Publication date: November 14, 2019
    Inventors: Noriyuki Ota, Ryohei Ono
  • Publication number: 20190234269
    Abstract: An exhaust emission control device for an internal combustion engine according to the present disclosure includes an exhaust emission control catalyst provided in an exhaust passage in an internal combustion engine and divided into a preceding catalyst and a succeeding catalyst, and a heating device provided in the exhaust passage between the preceding catalyst and the succeeding catalyst. The exhaust emission control catalyst is divided into the preceding catalyst and the succeeding catalyst so that a ratio of a capacity of the preceding catalyst to a total displacement of the internal combustion engine is from 0.3 to 1.5.
    Type: Application
    Filed: January 28, 2019
    Publication date: August 1, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryohei ONO, Masaaki SATO, Katsuhiro ITO, Akira MIKAMI, Kazuhiro UMEMOTO, Daichi IMAI
  • Publication number: 20190195114
    Abstract: A controller estimates a first estimated adsorption amount which is an amount of adsorption of ammonia in the SCR catalyst at the time when the SCR catalyst is assumed to be in a predetermined abnormal state, estimates a second estimated adsorption amount at the time when the SCR catalyst is assumed to be in a predetermined normal state, calculates a first slip development temperature based on the first estimated adsorption amount, and calculates a second slip development temperature based on the second estimated adsorption amount. The controller, when carrying out an abnormality diagnosis based on a concentration of ammonia in an exhaust gas at the downstream side of the SCR catalyst, carries out diagnostic temperature control so as to control the temperature of the SCR catalyst to a temperature which is equal to or more than the first slip development temperature and is less than the second slip development temperature.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 27, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryohei ONO, Masaaki Sato, Katsuhiro Ito, Akira Mikami, Kazuhiro Umemoto, Daichi Imai
  • Publication number: 20190186316
    Abstract: An exhaust gas purification apparatus for an internal combustion engine includes the adsorbent, the catalyst and the heat generating element, wherein in cases where the residual capacity of the battery is smaller than a first predetermined value required for raising the temperature of the catalyst to an activation temperature thereof, and in cases where the residual capacity of the battery is larger than a second predetermined value which is smaller than the first predetermined value and which is required for raising the temperature of the adsorbent to a predetermined temperature at which the adsorbent exhibits adsorption performance required at the time of starting of the internal combustion engine, an amount of electric power to be supplied to the heat generating element from the battery is adjusted such that the temperature of the adsorbent becomes the predetermined temperature.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 20, 2019
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryohei ONO, Masaaki Sato, Katsuhiro Ito, Akira Mikami, Kazuhiro Umemoto, Daichi Imai
  • Patent number: 10309338
    Abstract: A fuel injection valve (6) is configured such that the effective opening area of an injection port (61) increases as its lift amount increases. A fuel injection control unit (an engine control unit 100) injects fuel in a lift amount changing mode wherein, when fuel is injected into a combustion chamber (17) in the terminal period of the compression stroke, the lift amount of the fuel injection valve is set to a predetermined large lift amount in the earlier period of the injection period, and in the later period of the injection period following the earlier period of the injection period, the lift amount is set to a small lift amount smaller than the large lift amount and is in a range where the fuel injection speed increases.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 4, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Takeshi Nagasawa, Noriyuki Ota, Kenji Uchida, Ryohei Ono, Kiyotaka Sato, Hidefumi Fujimoto