Patents by Inventor Ryohei Takayanagi

Ryohei Takayanagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230255507
    Abstract: A magnetic resonance imaging apparatus includes sequence controlling circuitry configured: to obtain, during a time period after excitation of a first nuclide in a hyperpolarized state but no later than before obtainment of a first magnetic resonance signal from the first nuclide, a second magnetic resonance signal from a second nuclide that is different from the first nuclide and is in a non-hyperpolarized state, by exciting the second nuclide; and to control each of gradient magnetic field waveforms so as to cause both a first sum indicating a sum of application amounts of a gradient magnetic field related to the excitation of the second nuclide and a second sum indicating a sum of application amounts of a gradient magnetic field related to the obtainment of the second magnetic resonance signal to be close to zero, no later than before the obtainment of the first magnetic resonance signal.
    Type: Application
    Filed: February 8, 2023
    Publication date: August 17, 2023
    Applicant: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Ryohei TAKAYANAGI, Takaya MORI, Kagami FUJITA, Akihiro TAGUCHI, Masao YUI
  • Publication number: 20230246043
    Abstract: A semiconductor device and an imaging apparatus capable of suppressing short-channel effects are provided. The semiconductor device includes a semiconductor substrate and a transistor provided on the semiconductor substrate. The transistor includes a semiconductor region having a main surface and a first side surface intersecting the main surface, a gate insulating film provided on the semiconductor region, a gate electrode provided on the gate insulating film, a channel region covered with the gate insulating film and the gate electrode in the semiconductor region, and first-conductivity-type source and drain regions adjacent to the channel region. In a planar view from the normal direction of the main surface, the semiconductor region includes a first portion extended in a first direction, and a second portion extended from the first portion in a second direction intersecting the first direction.
    Type: Application
    Filed: May 17, 2021
    Publication date: August 3, 2023
    Inventor: RYOHEI TAKAYANAGI
  • Patent number: 11693073
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes processing circuitry configured, on a basis of one or both of (A) a parameter related to applying one of inversion and flip pulses and (B) an intensity of a slice selecting gradient magnetic field applied together with the one of the pulses in relation to selecting a slice to which the one of the pulses is applied, to determine one or both of (A) a parameter related to applying the other of the inversion and (B) flip pulses; and an intensity of the slice selecting gradient magnetic field applied together with the other of the pulses in relation to selecting a slice to which the other of the pulses is applied.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: July 4, 2023
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Ryohei Takayanagi, Hiroki Kondo, Masaaki Umeda, Naoyuki Furudate
  • Publication number: 20220137171
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes processing circuitry configured, on a basis of one or both of (A) a parameter related to applying one of inversion and flip pulses and (B) an intensity of a slice selecting gradient magnetic field applied together with the one of the pulses in relation to selecting a slice to which the one of the pulses is applied, to determine one or both of (A) a parameter related to applying the other of the inversion and (B) flip pulses; and an intensity of the slice selecting gradient magnetic field applied together with the other of the pulses in relation to selecting a slice to which the other of the pulses is applied.
    Type: Application
    Filed: October 28, 2021
    Publication date: May 5, 2022
    Applicant: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Ryohei TAKAYANAGI, Hiroki KONDO, Masaaki UMEDA, Naoyuki FURUDATE
  • Patent number: 9978843
    Abstract: An embodiment of a silicon carbide semiconductor device includes one or more inner cells each having a MOSFET and one or more outer peripheral cells that does not have a MOSFET structure, and the area (surface area) of the p+ contact region of each of the outermost peripheral cells is less than the surface area of an p+ contact region of each of the inner cells, for example, so that a unit total resistance of p+ contact regions of the outermost peripheral cells, as measured in a depth direction of the semiconductor substrate with respect to a unit area in a surface of the semiconductor substrate, is greater than a unit total resistance of the p+ contact regions of the inner cells, as measured in the depth direction of the semiconductor substrate with respect to the unit area in the surface of the semiconductor substrate.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: May 22, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Ryohei Takayanagi, Hiroki Wakimoto
  • Publication number: 20180076290
    Abstract: An embodiment of a silicon carbide semiconductor device includes one or more inner cells each having a MOSFET and one or more outer peripheral cells that does not have a MOSFET structure, and the area (surface area) of the p+ contact region of each of the outermost peripheral cells is less than the surface area of an p+ contact region of each of the inner cells, for example, so that a unit total resistance of p+ contact regions of the outermost peripheral cells, as measured in a depth direction of the semiconductor substrate with respect to a unit area in a surface of the semiconductor substrate, is greater than a unit total resistance of the p+ contact regions of the inner cells, as measured in the depth direction of the semiconductor substrate with respect to the unit area in the surface of the semiconductor substrate.
    Type: Application
    Filed: August 1, 2017
    Publication date: March 15, 2018
    Applicant: Fuji Electric Co., Ltd.
    Inventors: Ryohei TAKAYANAGI, Hiroki WAKIMOTO
  • Publication number: 20170077924
    Abstract: The semiconductor device includes a switching arm unit in which first and second wide bandgap semiconductor elements, each having a body diode, are connected in series between a positive line and a negative line; a current detecting unit that detects a current in at least a wide bandgap semiconductor element in which a flyback current flows; and a semiconductor element driving unit that drives the first and second wide bandgap semiconductor elements. When driving one of the wide bandgap semiconductor elements, the semiconductor element driving unit determines, by referring to a fault inhibiting characteristic curve, whether a flyback current detection value of the other wide bandgap semiconductor elements falls within a fault growth region or a fault inhibiting region, and when a result of the determination indicates that the flyback current detection value is within the fault growth region, inhibits a current flowing in the one wide bandgap semiconductor element.
    Type: Application
    Filed: August 9, 2016
    Publication date: March 16, 2017
    Applicant: Fuji Electric Co., Ltd.
    Inventors: Hayato NAKANO, Ryohei TAKAYANAGI
  • Patent number: 9595958
    Abstract: The semiconductor device includes a switching arm unit in which first and second wide bandgap semiconductor elements, each having a body diode, are connected in series between a positive line and a negative line; a current detecting unit that detects a current in at least a wide bandgap semiconductor element in which a flyback current flows; and a semiconductor element driving unit that drives the first and second wide bandgap semiconductor elements. When driving one of the wide bandgap semiconductor elements, the semiconductor element driving unit determines, by referring to a fault inhibiting characteristic curve, whether a flyback current detection value of the other wide bandgap semiconductor elements falls within a fault growth region or a fault inhibiting region, and when a result of the determination indicates that the flyback current detection value is within the fault growth region, inhibits a current flowing in the one wide bandgap semiconductor element.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: March 14, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Hayato Nakano, Ryohei Takayanagi