Patents by Inventor Ryoichi Ozaki

Ryoichi Ozaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180301838
    Abstract: A copper alloy sheet with a Sn coating layer comprises a base material made of Cu—Ni—Si system copper alloy. Formed on the base material is a Ni coating layer having an average thickness of 0.1 to 0.8 ?m. Formed on the Ni coating layer is a Cu—Sn alloy coating layer having an average thickness of 0.4 to 1.0 ?m. Formed on the Cu—Sn alloy coating layer is an Sn coating layer having average thickness of 0.1 to 0.8 ?m. A material surface is subject to reflow treatment and has arithmetic mean roughness Ra of 0.03 ?m or more and less than 0.15 ?m in both a direction parallel to the rolling direction and a direction perpendicular to the rolling direction. An exposure rate of the Cu—Sn alloy coating layer to the material surface is 10 to 50%. A fitting type connection terminal requiring low insertion force can be obtained at a low cost.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Masahiro TSURU, Ryoichi OZAKI, Koichi TAIRA
  • Patent number: 9644250
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width ? of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I(200)/I(220)) of intensity of diffraction of (I(200)) from the (200) plane in the sheet surface to intensity of diffraction of (I(220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: May 9, 2017
    Assignee: KOBE STEEL, LTD.
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Patent number: 9631260
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width p of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I (200) /I (220)) of intensity of diffraction of (1 (200)) from the (200) plane in the sheet surface to intensity of diffraction of (I (220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: April 25, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20130237105
    Abstract: A copper alloy sheet with a Sn coating layer comprises a base material made of Cu—Ni—Si system copper alloy. Formed on the base material is a Ni coating layer having an average thickness of 0.1 to 0.8 ?m. Formed on the Ni coating layer is a Cu—Sn alloy coating layer having an average thickness of 0.4 to 1.0 ?m. Formed on the Cu—Sn alloy coating layer is an Sn coating layer having average thickness of 0.1 to 0.8 ?m. A material surface is subject to reflow treatment and has arithmetic mean roughness Ra of 0.03 ?m or more and less than 0.15 ?m in both a direction parallel to the rolling direction and a direction perpendicular to the rolling direction. An exposure rate of the Cu—Sn alloy coating layer to the material surface is 10 to 50%. A fitting type connection terminal requiring low insertion force can be obtained at a low cost.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 12, 2013
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Masahiro Tsuru, Ryoichi Ozaki, Koichi Taira
  • Publication number: 20120308429
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width ? of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I(200)/I(220)) of intensity of diffraction of (I(200)) from the (200) plane in the sheet surface to intensity of diffraction of (I(220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 6, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20120039742
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20120039741
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Ryoichi OZAKI, Yosuke MIWA
  • Publication number: 20120039743
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
  • Patent number: 8076582
    Abstract: A terminal for an engaging type connector includes a punched Cu alloy strip as a base material, a coating formed on the Cu alloy strip by postplating processes and including a Sn layer, and a Cu—Sn alloy layer sandwiched between the base material and the Sn layer. The Sn layer is smoothed by a reflowing process. The terminal has an engaging part and a solder-bonding part, and the surface of a part of the base material corresponding to the engaging part has a surface roughness higher than that of the surface of the base material corresponding to the solder-bonding part. The engaging part has a low frictional property and the solder-bonding part has improved solder wettability.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: December 13, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasushi Masago, Ryoichi Ozaki, Kouichi Taira
  • Patent number: 8063471
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: November 22, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Patent number: 7928541
    Abstract: A QFN package is provided with a lead frame formed by processing a copper alloy sheet containing 0.01 to 0.50% by mass Fe, 0.01 to 0.20% by mass P, and Cu and inevitable impurities as other components, having a micro Vickers hardness of 150 or above, a uniform elongation of 5% or below and a local elongation of 10% or below, or a copper alloy sheet containing 0.05 to 2% by mass Ni, 0.001 to 0.3% by mass P, 0.005 to 5% by mass Zn, and Cu and inevitable impurities as other components, having a micro Vickers hardness of 150 or above, a uniform elongation of 5% or below and a local elongation of 10% or below. Lead burrs formed during the dicing of the QFN package are short, and a dicing blade used for dicing the QFN package is abraded at a low wear-out rate.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: April 19, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Yosuke Miwa, Masayasu Nishimura, Ryoichi Ozaki, Shinya Katsura
  • Patent number: 7871710
    Abstract: Disclosed is a conductive material for a connecting part, including: a base material made up of a Cu strip; a Cu—Sn alloy covering layer having an average thickness of 0.2 to 3.0 ?m; and an Sn covering layer, the Cu—Sn alloy covering layer being provided between the base material and the Sn covering layer, wherein in a cross section perpendicular to the surface of the conductive material, the diameter [D1] of the minimum inscribed circle of the Sn covering layer is 0.2 ?m or less, the diameter [D2] of the maximum inscribed circle of the Sn covering layer is 1.2 to 20 ?m, the difference in elevation [y] between the outermost point of the material and the outermost point of the Cu—Sn alloy covering layer is 0.2 ?m or less, and a bright or semi-bright tin electroplating layer having an average thickness of 0.01 ?m or more in an approximately uniform thickness is formed on the outermost layer as part of the Sn covering layer.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: January 18, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasushi Masago, Ryoichi Ozaki, Hiroshi Sakamoto, Yukio Sugishita
  • Publication number: 20100163277
    Abstract: A terminal for an engaging type connector includes a punched Cu alloy strip as a base material, a coating formed on the Cu alloy strip by postplating processes and including a Sn layer, and a Cu—Sn alloy layer sandwiched between the base material and the Sn layer. The Sn layer is smoothed by a reflowing process. The terminal has an engaging part and a solder-bonding part, and the surface of a part of the base material corresponding to the engaging part has a surface roughness higher than that of the surface of the base material corresponding to the solder-bonding part. The engaging part has a low frictional property and the solder-bonding part has improved solder wettability.
    Type: Application
    Filed: March 10, 2010
    Publication date: July 1, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Yasushi Masago, Ryoichi Ozaki, Kouichi Taira
  • Patent number: 7700883
    Abstract: A terminal for an engaging type connector includes a punched Cu alloy strip as a base material, a coating formed on the Cu alloy strip by postplating processes and including a Sn layer, and a Cu—Sn alloy layer sandwiched between the base material and the Sn layer. The Sn layer is smoothed by a reflowing process. The terminal has an engaging part and a solder-bonding part, and the surface of a part of the base material corresponding to the engaging part has a surface roughness higher than that of the surface of the base material corresponding to the solder-bonding part. The engaging part has a low frictional property and the solder-bonding part has improved solder wettability.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 20, 2010
    Assignee: (Kobe Steel, Ltd.)
    Inventors: Yasushi Masago, Ryoichi Ozaki, Kouichi Taira
  • Publication number: 20100072584
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Application
    Filed: September 26, 2007
    Publication date: March 25, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20090311128
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width ? of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I(200)/I(220)) of intensity of diffraction of (I(200)) from the (200) plane in the sheet surface to intensity of diffraction of (I(220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Application
    Filed: June 20, 2007
    Publication date: December 17, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd)
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20090224379
    Abstract: A QFN package is provided with a lead frame formed by processing a copper alloy sheet containing 0.01 to 0.50% by mass Fe, 0.01 to 0.20% by mass P, and Cu and inevitable impurities as other components, having a micro Vickers hardness of 150 or above, a uniform elongation of 5% or below and a local elongation of 10% or below, or a copper alloy sheet containing 0.05 to 2% by mass Ni, 0.001 to 0.3% by mass P, 0.005 to 5% by mass Zn, and Cu and inevitable impurities as other components, having a micro Vickers hardness of 150 or above, a uniform elongation of 5% or below and a local elongation of 10% or below. Lead burrs formed during the dicing of the QFN package are short, and a dicing blade used for dicing the QFN package is abraded at a low wear-out rate.
    Type: Application
    Filed: February 2, 2009
    Publication date: September 10, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Yosuke MIWA, Masayasu Nishimura, Ryoichi Ozaki, Shinya Katsura
  • Publication number: 20090053553
    Abstract: Disclosed is a conductive material for a connecting part, including: a base material made up of a Cu strip; a Cu—Sn alloy covering layer having an average thickness of 0.2 to 3.0 ?m; and an Sn covering layer, the Cu—Sn alloy covering layer being provided between the base material and the Sn covering layer, wherein in a cross section perpendicular to the surface of the conductive material, the diameter [D1] of the minimum inscribed circle of the Sn covering layer is 0.2 ?m or less, the diameter [D2] of the maximum inscribed circle of the Sn covering layer is 1.2 to 20 ?m, the difference in elevation [y] between the outermost point of the material and the outermost point of the Cu—Sn alloy covering layer is 0.2 ?m or less, and a bright or semi-bright tin electroplating layer having an average thickness of 0.01 ?m or more in an approximately uniform thickness is formed on the outermost layer as part of the Sn covering layer.
    Type: Application
    Filed: July 11, 2008
    Publication date: February 26, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasushi MASAGO, Ryoichi Ozaki, Hiroshi Sakamoto, Yukio Sugishita
  • Publication number: 20080257581
    Abstract: A terminal for an engaging type connector includes a punched Cu alloy strip as a base material, a coating formed on the Cu alloy strip by postplating processes and including a Sn layer, and a Cu—Sn alloy layer sandwiched between the base material and the Sn layer. The Sn layer is smoothed by a reflowing process. The terminal has an engaging part and a solder-bonding part, and the surface of a part of the base material corresponding to the engaging part has a surface roughness higher than that of the surface of the base material corresponding to the solder-bonding part. The engaging part has a low frictional property and the solder-bonding part has improved solder wettability.
    Type: Application
    Filed: April 11, 2008
    Publication date: October 23, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Yasushi MASAGO, Ryoichi Ozaki, Kouichi Taira
  • Publication number: 20080025867
    Abstract: Disclosed is a Cu—Fe—P alloy capable of enabling high strength, high electrical conductivity, and excellent softening resistance to coexist. The Cu—Fe—P alloy is suitable for use as a constituent material of a lead frame for a semiconductor device. With the Cu—Fe—P alloy with strength rendered higher by micronizing Fe-containing compounds, when enhancing softening resistance by increasing Sn content so as to exceed 0.5 mass %, at least one element selected from the group consisting of Ni, Mg, Ca, Al, Si, and Cr, in trace amounts, are caused to be additionally contained to thereby check cracking likely to occur at the time of forging and hot rolling in a process of producing the copper alloy, as a result of an increase in the Sn content.
    Type: Application
    Filed: May 31, 2007
    Publication date: January 31, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Katsura Kajihara