Patents by Inventor Ryoji Nomura

Ryoji Nomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240088184
    Abstract: There is provided a imaging device including: an N-type region formed for each pixel and configured to perform photoelectric conversion; an inter-pixel light-shielding wall penetrating a semiconductor substrate in a depth direction and formed between N-type regions configured to perform the photoelectric conversion, the N-type regions each being formed for each of pixels adjacent to each other; a P-type layer formed between the N-type region configured to perform the photoelectric conversion and the inter-pixel light-shielding wall; and a P-type region adjacent to the P-type layer and formed between the N-type region and an interface on a side of a light incident surface of the semiconductor substrate.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Tetsuya UCHIDA, Ryoji SUZUKI, Hisahiro ANSAI, Yoichi Ueda, Shinichi YOSHIDA, Yukari TAKEYA, Tomoyuki HIRANO, Hiroyuki MORI, Hirotoshi NOMURA, Yoshiharu KUDOH, Masashi OHURA, Shin IWABUCHI
  • Patent number: 11296280
    Abstract: It is an object of the present invention to provide a light emitting element, which is resistant to repetition of an oxidation reaction. It is another object of the invention to provide a light emitting element, which is resistant to repetition of a reduction reaction. An anthracene derivative is represented by a general formula (1). In the general formula (1), R1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, R2 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, R3 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms, Ph1 represents a phenyl group, and X1 represents an arylene group having 6 to 15 carbon atoms.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: April 5, 2022
    Inventors: Harue Nakashima, Sachiko Kawakami, Kumi Kojima, Ryoji Nomura, Nobuharu Ohsawa
  • Publication number: 20190355910
    Abstract: It is an object of the present invention to provide a light emitting element, which is resistant to repetition of an oxidation reaction. It is another object of the invention to provide a light emitting element, which is resistant to repetition of a reduction reaction. An anthracene derivative is represented by a general formula (1). In the general formula (1), R1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, R2 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, R3 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms, Ph1 represents a phenyl group, and X1 represents an arylene group having 6 to 15 carbon atoms.
    Type: Application
    Filed: June 14, 2019
    Publication date: November 21, 2019
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Nakashima, Sachiko Kawakami, Kumi Kojima, Ryoji Nomura, Nobuharu Ohsawa
  • Patent number: 10326078
    Abstract: It is an object of the present invention to provide a light emitting element, which is resistant to repetition of an oxidation reaction. It is another object of the invention to provide a light emitting element, which is resistant to repetition of a reduction reaction. An anthracene derivative is represented by a general formula (1). In the general formula (1), R1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, R2 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, R3 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms, Ph1 represents a phenyl group, and X1 represents an arylene group having 6 to 15 carbon atoms.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: June 18, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Nakashima, Sachiko Kawakami, Kumi Kojima, Ryoji Nomura, Nobuharu Ohsawa
  • Patent number: 10134996
    Abstract: It is an object of the present invention to provide a composite material that can be used for manufacturing a heat-resistant light-emitting element, provide a composite material that can be used for manufacturing a heat-resistant light-emitting element that can be driven with stability for a long period of time, and further, provide a composite material that can be used for manufacturing a light-emitting element that easily prevents short circuit between electrodes and uses less power. The present invention provides a composite material that has a first metal oxide skeleton including a first metal atom and an organic compound that is bound to the first metal atom by forming a chelate, where the first metal oxide exhibits an electron accepting property to the organic compound.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: November 20, 2018
    Assignee: Semicondcutor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Seo, Harue Nakashima, Ryoji Nomura, Satoko Shitagaki
  • Patent number: 10079345
    Abstract: An object is to provide a novel anthracene derivative. Another object is to provide a light-emitting element with high luminous efficiency. Yet another object is to provide a light-emitting element with a long lifetime. Still another object is to provide a light-emitting device and an electronic device having a long lifetime by using the light-emitting elements of the present invention. The anthracene derivative represented by General Formula (1) is provided. The ability of the anthracene derivative represented by General Formula (1) to exhibit high luminous efficiency allows the production of a light-emitting element with high luminous efficiency and a long lifetime.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: September 18, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakazu Egawa, Harue Nakashima, Sachiko Kawakami, Tsunenori Suzuki, Ryoji Nomura
  • Patent number: 9997568
    Abstract: The invention provides a semiconductor device which is non-volatile, easily manufactured, and can be additionally written. A semiconductor device of the invention includes a plurality of transistors, a conductive layer which functions as a source wiring or a drain wiring of the transistors, and a memory element which overlaps one of the plurality of transistors, and a conductive layer which functions as an antenna. The memory element includes a first conductive layer, an organic compound layer and a phase change layer, and a second conductive layer stacked in this order. The conductive layer which functions as an antenna and a conductive layer which functions as a source wiring or a drain wiring of the plurality of transistors are provided on the same layer.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: June 12, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroko Abe, Yukie Nemoto, Ryoji Nomura, Mikio Yukawa
  • Patent number: 9786669
    Abstract: A semiconductor device that can transmit and receive data without contact is popular partly as some railway passes, electronic money cards, and the like; however, it has been a prime task to provide an inexpensive semiconductor device for further popularization. In view of the above current conditions, a semiconductor device of the present invention includes a memory with a simple structure for providing an inexpensive semiconductor device and a manufacturing method thereof. A memory element included in the memory includes a layer containing an organic compound, and a source electrode or a drain electrode of a TFT provided in the memory element portion is used as a conductive layer which forms a bit line of the memory element.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: October 10, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshinobu Asami, Tamae Takano, Masayuki Sakakura, Ryoji Nomura, Shunpei Yamazaki
  • Publication number: 20170098776
    Abstract: It is an object of the present invention to provide a light emitting element, which is resistant to repetition of an oxidation reaction. It is another object of the invention to provide a light emitting element, which is resistant to repetition of a reduction reaction. An anthracene derivative is represented by a general formula (1). In the general formula (1), R1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, R2 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, R3 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms, Ph1 represents a phenyl group, and X1 represents an arylene group having 6 to 15 carbon atoms.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 6, 2017
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue NAKASHIMA, Sachiko KAWAKAMI, Kumi KOJIMA, Ryoji NOMURA, Nobuharu OHSAWA
  • Publication number: 20160358977
    Abstract: The invention provides a semiconductor device which is non-volatile, easily manufactured, and can be additionally written. A semiconductor device of the invention includes a plurality of transistors, a conductive layer which functions as a source wiring or a drain wiring of the transistors, and a memory element which overlaps one of the plurality of transistors, and a conductive layer which functions as an antenna. The memory element includes a first conductive layer, an organic compound layer and a phase change layer, and a second conductive layer stacked in this order. The conductive layer which functions as an antenna and a conductive layer which functions as a source wiring or a drain wiring of the plurality of transistors are provided on the same layer.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 8, 2016
    Inventors: Shunpei YAMAZAKI, Hiroko ABE, Yukie NEMOTO, Ryoji NOMURA, Mikio YUKAWA
  • Patent number: 9478751
    Abstract: It is an object of the present invention to provide a light emitting element, which is resistant to repetition of an oxidation reaction. It is another object of the invention to provide a light emitting element, which is resistant to repetition of a reduction reaction. An anthracene derivative is represented by a general formula (1). In the general formula (1), R1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, R2 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, R3 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms, Ph1 represents a phenyl group, and X1 represents an arylene group having 6 to 15 carbon atoms.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: October 25, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Nakashima, Sachiko Kawakami, Kumi Kojima, Ryoji Nomura, Nobuharu Ohsawa
  • Patent number: 9391128
    Abstract: Color purity of a light emitting element is improved without an adverse effect such as reduction in voltage and luminance efficiency. The light emitting element has a light emitting laminated body including a light emitting layer between a pair of electrodes. A buffer layer is provided to be in contact with at least one of the electrodes. One of the electrodes is an electrode having high reflectance and the other is a translucent electrode. By employing a translucent electrode, light can be transmitted and reflected. An optical distance between the electrodes is adjusted in accordance with a thickness of the buffer layer, and accordingly, light can be resonated between the electrodes. The buffer layer is made of a composite material including an organic compound and a metal compound; therefore, voltage and luminance efficiency of the light emitting element is not affected even if a distance between the electrodes becomes long.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: July 12, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryoji Nomura, Satoshi Seo, Yuji Iwaki, Nozomu Sugisawa
  • Publication number: 20160197278
    Abstract: An object is to provide a novel anthracene derivative. Another object is to provide a light-emitting element with high luminous efficiency. Yet another object is to provide a light-emitting element with a long lifetime. Still another object is to provide a light-emitting device and an electronic device having a long lifetime by using the light-emitting elements of the present invention. The anthracene derivative represented by General Formula (1) is provided. The ability of the anthracene derivative represented by General Formula (1) to exhibit high luminous efficiency allows the production of a light-emitting element with high luminous efficiency and a long lifetime.
    Type: Application
    Filed: March 14, 2016
    Publication date: July 7, 2016
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakazu Egawa, Harue Nakashima, Sachiko Kawakami, Tsunenori Suzuki, Ryoji Nomura
  • Patent number: 9362339
    Abstract: The invention provides a semiconductor device which is non-volatile, easily manufactured, and can be additionally written. A semiconductor device of the invention includes a plurality of transistors, a conductive layer which functions as a source wiring or a drain wiring of the transistors, and a memory element which overlaps one of the plurality of transistors, and a conductive layer which functions as an antenna. The memory element includes a first conductive layer, an organic compound layer and a phase change layer, and a second conductive layer stacked in this order. The conductive layer which functions as an antenna and a conductive layer which functions as a source wiring or a drain wiring of the plurality of transistors are provided on the same layer.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: June 7, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroko Abe, Yukie Nemoto, Ryoji Nomura, Mikio Yukawa
  • Patent number: 9290842
    Abstract: The present invention provides an evaporation device for which maintenance is readily conducted, and further, provides an electrode cover which can prevent an evaporation material from being adhered to electrodes. Moreover, the present invention provides an evaporation device including an evaporation chamber; a holding portion for holding an object to be treated; an evaporation source; an electrode; an electrode cover; and a power supply, in which the evaporation chamber includes the holding portion in an upper portion, and includes the evaporation source, the electrode, and the electrode cover in a lower portion; the electrode cover covers at least a part of an exposed surface of the electrode; the electrode and the power supply are electrically connected.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: March 22, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Nobuharu Ohsawa, Ryoji Nomura, Masahiro Takahashi
  • Patent number: 9287511
    Abstract: An object is to provide a novel anthracene derivative. Another object is to provide a light-emitting element with high luminous efficiency. Yet another object is to provide a light-emitting element with a long lifetime. Still another object is to provide a light-emitting device and an electronic device having a long lifetime by using the light-emitting elements of the present invention. The anthracene derivative represented by General Formula (1) is provided. The ability of the anthracene derivative represented by General Formula (1) to exhibit high luminous efficiency allows the production of a light-emitting element with high luminous efficiency and a long lifetime.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 15, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakazu Egawa, Harue Nakashima, Sachiko Kawakami, Tsunenori Suzuki, Ryoji Nomura
  • Publication number: 20160005740
    Abstract: A semiconductor device that can transmit and receive data without contact is popular partly as some railway passes, electronic money cards, and the like; however, it has been a prime task to provide an inexpensive semiconductor device for further popularization. In view of the above current conditions, a semiconductor device of the present invention includes a memory with a simple structure for providing an inexpensive semiconductor device and a manufacturing method thereof. A memory element included in the memory includes a layer containing an organic compound, and a source electrode or a drain electrode of a TFT provided in the memory element portion is used as a conductive layer which forms a bit line of the memory element.
    Type: Application
    Filed: September 3, 2015
    Publication date: January 7, 2016
    Inventors: Yoshinobu ASAMI, Tamae TAKANO, Masayuki SAKAKURA, Ryoji NOMURA, Shunpei YAMAZAKI
  • Patent number: 9224968
    Abstract: An object of the present invention is to provide a light-emitting element with high luminous efficiency, and a light-emitting element of low-voltage driving. Another object is to provide a light-emitting device with low power consumption by using the light-emitting element. Another object is to provide an electronic appliance with low power consumption by using the light-emitting device in a display portion. A light-emitting element includes, between a pair of electrodes, a layer containing a composite material of a first organic compound and an inorganic compound and a layer containing a second organic compound being in contact with the layer containing the composite material, wherein the second organic compound does not have a peak of an absorption spectrum in a wavelength region of 450 to 800 nm if the second organic compound is compounded with the inorganic compound.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: December 29, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuji Iwaki, Junichiro Sakata, Hisao Ikeda, Tomoya Aoyama, Takaaki Nagata, Takahiro Kawakami, Satoshi Seo, Ryoji Nomura
  • Patent number: 9219235
    Abstract: It is an object of the present invention to provide a light emitting element, which is resistant to repetition of an oxidation reaction. It is another object of the invention to provide a light emitting element, which is resistant to repetition of a reduction reaction. An anthracene derivative is represented by a general formula (1). In the general formula (1), R1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms, R2 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 12 carbon atoms, R3 represents any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 12 carbon atoms, Ph1 represents a phenyl group, and X1 represents an arylene group having 6 to 15 carbon atoms.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: December 22, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Harue Nakashima, Sachiko Kawakami, Kumi Kojima, Ryoji Nomura, Nobuharu Ohsawa
  • Patent number: 9174927
    Abstract: A novel stilbene derivative is provided with motivation of providing a blue emissive material showing excellent color purity. The use of the stilbene derivative of the present invention allows the fabrication of a blue-emissive light-emitting element with excellent color purity. The invention also includes an electronic device equipped with a display portion in which the stilbene derivative is employed. The stilbene derivative of the present invention is represented by formula (1), in which Ar1 and Ar2 may form a 5-membered ring by being directly bonded to each other. In formula (1), A11 represents any one of substituents represented by general formulas (1-1) to (1-3). The variables shown in formula (1) and (1-1) to (1-3) are as defined in the specification.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: November 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masakazu Egawa, Harue Osaka, Sachiko Kawakami, Nobuharu Ohsawa, Satoshi Seo, Ryoji Nomura