Patents by Inventor Ryokichi Hashizume

Ryokichi Hashizume has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7820098
    Abstract: In the thermal power system, the electricity production efficiency may be improved by providing turbine members having the improved high temperature characteristic over the corresponding prior art turbine members. Turbine members may be provided by using high resistant steels composed of any one or ones selected from the group consisting of the components, including 0.08 to 0.13% of carbon (C), 8.5 to 9.8% of chromium (Cr), 0 to 1.5% of molybdenum (Mo), 0.10 to 0.25% of vanadium (V), 0.03 to 0.08% of niobium (Nb), 0.2 to 5.0% of tungsten (W), 1.5 to 6.0% of cobalt (Co), 0.002 to 0.015% of boron (B), 0.015 to 0.025% of nitrogen (N), and optionally, 0.01 to 3.0% of rhenium (Re), 0.1 to 0.50% of silicon (Si), 0.1 to 1.0% of manganese (Mo), 0.05 to 0.8% of nickel (Ni) and 0.1 to 1.3% of cupper.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: October 26, 2010
    Assignees: The Japan Steel Works, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masahiko Morinaga, Yoshinori Murata, Tsukasa Azuma, Kazuhiro Miki, Tohru Ishiguro, Ryokichi Hashizume
  • Patent number: 7597843
    Abstract: Nickel based superalloys with excellent mechanical strength, corrosion resistance and oxidation resistance, which consist essentially of chromium in an amount of 3 to 7% by weight, cobalt in an amount of 3 to 15% by weight, tungsten in an amount of 4.5 to 8% by weight, rhenium in an amount of 3.3 to 6% by weight, tantalum in an amount of 4 to 8% by weight, titanium in an amount of 0.8 to 2% by weight, aluminum in an amount of 4.5 to 6.5% by weight, ruthenium in an amount of 0.1 to 6%, hafnium in an amount of 0.01 to 0.2% by weight, molybdenum in an amount of less than 0.5% by weight, carbon in an amount 0.06% by weight or less, boron in an amount of 0.01% by weight or less, zirconium in an amount of 0.01% by weight or less, oxygen in an amount of 0.005% by weight or less, nitrogen in an amount of 0.005% by weight or less and inevitable impurities and the balance being nickel.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: October 6, 2009
    Assignees: Hitachi, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
  • Patent number: 7306682
    Abstract: An object of this invention is to provide a single-crystal nickel-based superalloy having high creep rupture strength at high temperatures and excel at corrosion resistance and oxidation resistance at high temperatures. Single-crystal nickel-based superalloys with high temperature strength, hot corrosion resistance and oxidation resistance comprising by weight, 3.0 to 7.0% Cr, 9.5 to 15.0% Co, 4.5 to 8.0% W, 3.3 to 6.0% Re, 4.0 to 8.0% Ta, 0.8 to 2.0% Ti, 4.5 to 6.5% Al, 0.01 to 0.2% Hf, less than 0.5% Mo, 0.01% or less C, 0.005% or less B, 0.01% or less Zr, 0.005% or less O, 0.005% or less N, and balance substantially Ni.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: December 11, 2007
    Assignees: Hitachi, Ltd., The Kansai Electric Power Co., Inc., Masahiko Morinaga, Yoshinori Murata
    Inventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
  • Publication number: 20070235110
    Abstract: Nickel based superalloys with excellent mechanical strength, corrosion resistance and oxidation resistance, which consist essentially of chromium in an amount of 3 to 7% by weight, cobalt in an amount of 3 to 15% by weight, tungsten in an amount of 4.5 to 8% by weight, rhenium in an amount of 3.3 to 6% by weight, tantalum in an amount of 4 to 8% by weight, titanium in an amount of 0.8 to 2% by weight, aluminum in an amount of 4.5 to 6.5% by weight, ruthenium in an amount of 0.1 to 6%, hafnium in an amount of 0.01 to 0.2% by weight, molybdenum in an amount of less than 0.5% by weight, carbon in an amount 0.06% by weight or less, boron in an amount of 0.01% by weight or less, zirconium in an amount of 0.01% by weight or less, oxygen in an amount of 0.005% by weight or less, nitrogen in an amount of 0.005% by weight or less and inevitable impurities and the balance being nickel.
    Type: Application
    Filed: August 29, 2005
    Publication date: October 11, 2007
    Inventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
  • Publication number: 20050067062
    Abstract: An object of this invention is to provide a single-crystal nickel-based superalloy having high creep rupture strength at high temperatures and excel at corrosion resistance and oxidation resistance at high temperatures. Single-crystal nickel-based superalloys with high temperature strength, hot corrosion resistance and oxidation resistance comprising by weight, 3.0 to 7.0% Cr, 9.5 to 15.0% Co, 4.5 to 8.0% W, 3.3 to 6.0% Re, 4.0 to 8.0% Ta, 0.8 to 2.0% Ti, 4.5 to 6.5% Al, 0.01 to 0.2% Hf, less than 0.5% Mo, 0.01% or less C, 0.005% or less B, 0.01% or less Zr, 0.005% or less O, 0.005% or less N, and balance substantially Ni.
    Type: Application
    Filed: August 10, 2004
    Publication date: March 31, 2005
    Applicants: HITACHI, LTD., The Kansai Electric Power Co., Inc., Masahiko Morinaga, Yoshinori Murata
    Inventors: Akira Yoshinari, Ryokichi Hashizume, Masahiko Morinaga, Yoshinori Murata
  • Publication number: 20030024609
    Abstract: In the thermal power system, the electricity production efficiency may be improved by providing turbine members having the improved high temperature characteristic over the corresponding prior art turbine members. Turbine members may be provided by using high resistant steels composed of any one or ones selected from the group consisting of the components, including 0.08 to 0.13% of carbon (C), 8.5 to 9.8% of chromium (Cr), 0 to 1.5% of molybdenum (Mo), 0.10 to 0.25% of vanadium (V), 0.03 to 0.08% of niobium (Nb), 0.2 to 5.0% of tungsten (W), 1.5 to 6.0% of cobalt (Co), 0.002 to 0.015% of boron (B), 0.015 to 0.025% of nitrogen (N), and optionally, 0.01 to 3.0% of rhenium (Re), 0.1 to 0.50% of silicon (Si), 0.1 to 1.0% of manganese (Mo), 0.05 to 0.8% of nickel (Ni) and 0.1 to 1.3% of cupper.
    Type: Application
    Filed: July 16, 2002
    Publication date: February 6, 2003
    Inventors: Masahiko Morinaga, Yoshinori Murata, Tsukasa Azuma, Kazuhiro Miki, Tohru Ishiguro, Ryokichi Hashizume
  • Patent number: 6174385
    Abstract: A method of designing a ferritic iron-base alloy having excellent characteristics according not to the conventional trial-and-error technique but to a theoretical method, and a ferritic heat-resistant steel for use as the material of turbines and boilers usable even in an ultrasupercritical pressure power plant.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: January 16, 2001
    Assignee: The Kansai Electric Power Co., Inc.
    Inventors: Masahiko Morinaga, Yoshinori Murata, Ryokichi Hashizume
  • Patent number: 5888318
    Abstract: A method of designing a ferritic iron-base alloy having excellent characteristics according not to the conventional trial-and-error technique but to a theoretical method, and a ferritic heat-resistant steel for use as the material of turbines and boilers usable even in an ultrasupercritical pressure power plant. Specifically, the d-electron orbital energy level (Md) and the bond order (Bo) with respect to iron (Fe) of each alloying element of a body-centered cubic iron-base alloy are determined by the Dv-X.alpha. cluster method, and the type and quantity of each element to be added to the alloy are determined in such a manner that the average Bo value and average Md value represented respectively by the following equations:average Bo value=.SIGMA.Xi.(Bo)i 1average Md value=.SIGMA.Xi.
    Type: Grant
    Filed: January 6, 1997
    Date of Patent: March 30, 1999
    Assignee: The Kansai Electric Power Co., Inc.
    Inventors: Masahiko Morinaga, Yoshinori Murata, Ryokichi Hashizume