Patents by Inventor Ryoko Horie

Ryoko Horie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9110176
    Abstract: Provided is a radiation detecting element, including: needle crystal scintillators and a protruding pattern in which: one end of the needle crystal scintillators is in contact with of upper surfaces of the multiple protrusions; a gap corresponding to a gap between the multiple protrusions is provided between portions of the needle crystal scintillators in contact with the upper surfaces of the multiple protrusions; and a number of the needle crystal scintillators in contact with one of the upper surfaces is 5 or less. Conventionally, since the needle crystals exhibit a state of a polycrystalline film in an early stage of vapor deposition, and light also spreads in a horizontal direction, the light received by a photodetector portion and the spatial resolution was lower than ideal values. The present invention enables the deviating region to be the ideal state in an early stage of growth.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 18, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Tomoyuki Oike, Nobuhiro Yasui, Toru Den, Yoshihiro Ohashi, Ryoko Horie
  • Publication number: 20140319362
    Abstract: In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.
    Type: Application
    Filed: December 19, 2013
    Publication date: October 30, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den, Ryoko Horie
  • Patent number: 8741110
    Abstract: A method of forming a film, including the steps of preparing a base plate having a first region and a second region comprised of mutually different materials wherein at least one of the materials is an oxide and selectively conducting a film deposition on either one of the first region and the second region by a bias sputtering. Both the first and second regions can be formed of an oxide. Further, provided is a vapor film deposition method including irradiating a substrate having a plurality of regions of different constituent element groups composed of at least one element with a source material element group composed of at least one element to be deposited and ionized elements.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: June 3, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Ryoko Horie, Toru Den
  • Patent number: 8674309
    Abstract: In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: March 18, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den, Ryoko Horie
  • Publication number: 20140034839
    Abstract: Provided is a scintillator used for detecting radiation in an X-ray CT scanner or the like, the scintillator having a unidirectional phase separation structure having an optical waveguide function, which eliminates the need of formation of partition walls for preventing crosstalks. The scintillator has the phase separation structure including: a first crystal phase including multiple columnar crystals having unidirectionality; and a second crystal phase filling space on the side of the first crystal phase. The second crystal phase includes a material represented by Cs3Cu2[XaY1-a]5, where X and Y are elements which are different from each other and which are selected from the group consisting of I, Br, and Cl, and 0?a?1 is satisfied.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryoko Horie, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Patent number: 8637825
    Abstract: In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: January 28, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den, Ryoko Horie
  • Patent number: 8586931
    Abstract: Provided is a scintillator used for detecting radiation in an X-ray CT scanner or the like, the scintillator having a unidirectional phase separation structure having an optical waveguide function, which eliminates the need of formation of partition walls for preventing crosstalks. The scintillator has the phase separation structure including: a first crystal phase including multiple columnar crystals having unidirectionality; and a second crystal phase filling space on the side of the first crystal phase. The second crystal phase includes a material represented by Cs3Cu2[XaY1-a]5, where X and Y are elements which are different from each other and which are selected from the group consisting of I, Br, and Cl, and 0?a?1 is satisfied.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: November 19, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoko Horie, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Publication number: 20130015357
    Abstract: Provided is a scintillator used for detecting radiation in an X-ray CT scanner or the like, the scintillator having a unidirectional phase separation structure having an optical waveguide function, which eliminates the need of formation of partition walls for preventing crosstalks. The scintillator has the phase separation structure including: a first crystal phase including multiple columnar crystals having unidirectionality; and a second crystal phase filling space on the side of the first crystal phase. The second crystal phase includes a material represented by Cs3Cu2[XaY1-a]5, where X and Y are elements which are different from each other and which are selected from the group consisting of I, Br, and Cl, and 0?a?1 is satisfied.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 17, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryoko Horie, Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den
  • Patent number: 8344328
    Abstract: A position detector includes a photodetector having photodetecting elements; and a scintillator crystal having uniaxial optical anisotropy. The scintillator crystal is continuous in a uniaxial direction, is disposed on the photodetector such that the uniaxial direction is not perpendicular to the normal to a photodetecting surface, and has a length at least three times the pitch of the photodetecting elements. The uniaxial anisotropy allows at least 4% of scintillation light emitted from a region farthest above the photodetecting surface to reach the photodetecting elements, and allows from 4% to 35% of scintillation light emitted from a region closest to the photodetecting surface to reach the photodetecting elements.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 1, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Den, Tatsuya Saito, Nobuhiro Yasui, Ryoko Horie
  • Publication number: 20120312999
    Abstract: Provided is a radiation detecting element, including: needle crystal scintillators and a protruding pattern in which: one end of the needle crystal scintillators is in contact with of upper surfaces of the multiple protrusions; a gap corresponding to a gap between the multiple protrusions is provided between portions of the needle crystal scintillators in contact with the upper surfaces of the multiple protrusions; and a number of the needle crystal scintillators in contact with one of the upper surfaces is 5 or less. Conventionally, since the needle crystals exhibit a state of a polycrystalline film in an early stage of vapor deposition, and light also spreads in a horizontal direction, the light received by a photodetector portion and the spatial resolution was lower than ideal values. The present invention enables the deviating region to be the ideal state in an early stage of growth.
    Type: Application
    Filed: May 16, 2012
    Publication date: December 13, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tomoyuki Oike, Nobuhiro Yasui, Toru Den, Yoshihiro Ohashi, Ryoko Horie
  • Patent number: 8329001
    Abstract: To provide a filmy structure of a nanometer size having a phase-separated structure effective for the case where a compound can be formed between two kinds of materials. A structure constituted by a first member containing a compound between an element A except both Si and Ge and SinGe1-n (where 0?n?1) and a second member containing one of the element A and SinGe1-n (where 0?n?1), in which one of the first member and the second member is a columnar member, formed on a substrate, whose side face is surrounded by the other member, the ratio Dl/Ds of an average diameter Dl in the major axis direction to an average diameter Ds in the minor axis direction of a transverse sectional shape of the columnar member is less than 5, and the element A is one of Li, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and B.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: December 11, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Ryoko Horie, Toru Den
  • Publication number: 20120292516
    Abstract: In a scintillator used for radiation detection, such as an X-ray CT scanner, a scintillation crystal body having a unidirectional phase separation structure is provided which has a light guide function for crosstalk prevention without using partitions. The phase separation structure includes a first crystal phase and a second crystal phase having a refractive index larger than that of the first crystal phase and which have a first principal surface and a second principal surface, these principal surfaces being not located on the same plane, the first principal surface and the second principal surface have portions to which the second crystal phase is exposed, and a portion of the second crystal phase exposed to the first principal surface and a portion of the second crystal phase exposed to the second principal surface are connected to each other.
    Type: Application
    Filed: January 12, 2011
    Publication date: November 22, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Nobuhiro Yasui, Yoshihiro Ohashi, Toru Den, Ryoko Horie
  • Patent number: 8138011
    Abstract: A method of manufacturing a radiation-detecting device including spaced first columnar scintillators, second columnar scintillators which are located between the neighboring first columnar scintillators and which are spaced from the first columnar scintillators, and photodetecting elements overlapping with the first columnar scintillators includes a step of preparing the substrate such that the substrate has a surface having an uneven section having protruding portions and a plurality of spaced flat sections surrounded by the uneven section and also includes a step of forming the first columnar scintillators and the second columnar scintillators on the flat sections and the protruding portions, respectively, by depositing a scintillator material on the substrate having the uneven section and the flat sections. The uneven section has recessed portions and satisfies the following inequality: h/d?1 where h is the depth of each recessed portion and d is the distance between the protruding portions.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 20, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuya Saito, Ryoko Horie, Nobuhiro Yasui, Toru Den
  • Patent number: 8133538
    Abstract: A method of producing a mold having an uneven structure and a mold for an optical element are provided. The method includes forming on a nickel substrate a mixed film using nickel and a material which phase separates from nickel simultaneously, the mixed film including a plurality of cylinders including nickel as a component thereof and a matrix region including the material which phase separates from nickel as a component thereof and surrounding the plurality of cylinders; and removing the matrix portion from the mixed film by etching to give a mold including nickel or a nickel alloy. The uneven structure is disposed in plurality on the substrate, and a pitch of the uneven structure is within a range of 30 nm or more and 500 nm or less and a depth of the uneven structure is within a range of 100 nm or more.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 13, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoko Horie, Yasuhiro Matsuo, Nobuhiro Yasui, Toru Den
  • Publication number: 20120049073
    Abstract: A position detector includes a photodetector having photodetecting elements; and a scintillator crystal having uniaxial optical anisotropy. The scintillator crystal is continuous in a uniaxial direction, is disposed on the photodetector such that the uniaxial direction is not perpendicular to the normal to a photodetecting surface, and has a length at least three times the pitch of the photodetecting elements. The uniaxial anisotropy allows at least 4% of scintillation light emitted from a region farthest above the photodetecting surface to reach the photodetecting elements, and allows from 4% to 35% of scintillation light emitted from a region closest to the photodetecting surface to reach the photodetecting elements.
    Type: Application
    Filed: August 19, 2011
    Publication date: March 1, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Toru Den, Tatsuya Saito, Nobuhiro Yasui, Ryoko Horie
  • Publication number: 20110248366
    Abstract: A method of manufacturing a radiation-detecting device including spaced first columnar scintillators, second columnar scintillators which are located between the neighboring first columnar scintillators and which are spaced from the first columnar scintillators, and photodetecting elements overlapping with the first columnar scintillators includes a step of preparing the substrate such that the substrate has a surface having an uneven section having protruding portions and a plurality of spaced flat sections surrounded by the uneven section and also includes a step of forming the first columnar scintillators and the second columnar scintillators on the flat sections and the protruding portions, respectively, by depositing a scintillator material on the substrate having the uneven section and the flat sections. The uneven section has recessed portions and satisfies the following inequality: h/d?1 where h is the depth of each recessed portion and d is the distance between the protruding portions.
    Type: Application
    Filed: March 25, 2011
    Publication date: October 13, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tatsuya Saito, Ryoko Horie, Nobuhiro Yasui, Toru Den
  • Patent number: 7700219
    Abstract: The present invention provides a new method for producing a structure having a three-dimensional network skeleton. The method includes providing a film including a first material and a second material and removing the second material contained in the film by dry etching. The first material contains a noble metal and is dispersed in the second material.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 20, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoko Horie, Hiroshi Okura, Nobuhiro Yasui, Toru Den
  • Publication number: 20080182014
    Abstract: To provide a filmy structure of a nanometer size having a phase-separated structure effective for the case where a compound can be formed between two kinds of materials. A structure constituted by a first member containing a compound between an element A except both Si and Ge and SinGe1-n (where 0?n?1) and a second member containing one of the element A and SinGe1-n (where 0?n?1), in which one of the first member and the second member is a columnar member, formed on a substrate, whose side face is surrounded by the other member, the ratio Dl/Ds of an average diameter Dl in the major axis direction to an average diameter Ds in the minor axis direction of a transverse sectional shape of the columnar member is less than 5, and the element A is one of Li, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and B.
    Type: Application
    Filed: February 29, 2008
    Publication date: July 31, 2008
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Nobuhiro Yasui, Ryoko Horie, Toru Den
  • Patent number: 7361420
    Abstract: To provide a filmy structure of a nanometer size having a phase-separated structure effective for the case where a compound can be formed between two kinds of materials. A structure constituted by a first member containing a compound between an element A except both Si and Ge and SinGe1-n (where 0?n?1) and a second member containing one of the element A and SinGe1-n (where 0?n?1), in which one of the first member and the second member is a columnar member, formed on a substrate, whose side face is surrounded by the other member, the ratio Dl/Ds of an average diameter Dl in the major axis direction to an average diameter Ds in the minor axis direction of a transverse sectional shape of the columnar member is less than 5, and the element A is one of Li, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and B.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: April 22, 2008
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuhiro Yasui, Ryoko Horie, Toru Den
  • Publication number: 20070256925
    Abstract: A method of forming a film, including the steps of preparing a base plate having a first region and a second region comprised of mutually different materials wherein at least one of the materials is an oxide and selectively conducting a film deposition on either one of the first region and the second region by a bias sputtering. Both the first and second regions can be formed of an oxide. Further, provided is a vapor film deposition method including irradiating a substrate having a plurality of regions of different constituent element groups composed of at least one element with a source material element group composed of at least one element to be deposited and ionized elements.
    Type: Application
    Filed: April 30, 2007
    Publication date: November 8, 2007
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: NOBUHIRO YASUI, RYOKO HORIE, TORU DEN